| Step | Hyp | Ref | Expression |
| 1 |
|
bitr4 |
(all A (a ++ b) <-> A. x (x IN a ++ b -> x e. A)) -> (all A a /\ all A b <-> A. x (x IN a ++ b -> x e. A)) -> (all A (a ++ b) <-> all A a /\ all A b) |
| 2 |
|
allal2 |
all A (a ++ b) <-> A. x (x IN a ++ b -> x e. A) |
| 3 |
1, 2 |
ax_mp |
(all A a /\ all A b <-> A. x (x IN a ++ b -> x e. A)) -> (all A (a ++ b) <-> all A a /\ all A b) |
| 4 |
|
bitr4 |
(all A a /\ all A b <-> A. x (x IN a -> x e. A) /\ A. x (x IN b -> x e. A)) ->
(A. x (x IN a ++ b -> x e. A) <-> A. x (x IN a -> x e. A) /\ A. x (x IN b -> x e. A)) ->
(all A a /\ all A b <-> A. x (x IN a ++ b -> x e. A)) |
| 5 |
|
aneq |
(all A a <-> A. x (x IN a -> x e. A)) -> (all A b <-> A. x (x IN b -> x e. A)) -> (all A a /\ all A b <-> A. x (x IN a -> x e. A) /\ A. x (x IN b -> x e. A)) |
| 6 |
|
allal2 |
all A a <-> A. x (x IN a -> x e. A) |
| 7 |
5, 6 |
ax_mp |
(all A b <-> A. x (x IN b -> x e. A)) -> (all A a /\ all A b <-> A. x (x IN a -> x e. A) /\ A. x (x IN b -> x e. A)) |
| 8 |
|
allal2 |
all A b <-> A. x (x IN b -> x e. A) |
| 9 |
7, 8 |
ax_mp |
all A a /\ all A b <-> A. x (x IN a -> x e. A) /\ A. x (x IN b -> x e. A) |
| 10 |
4, 9 |
ax_mp |
(A. x (x IN a ++ b -> x e. A) <-> A. x (x IN a -> x e. A) /\ A. x (x IN b -> x e. A)) -> (all A a /\ all A b <-> A. x (x IN a ++ b -> x e. A)) |
| 11 |
|
bitr |
(A. x (x IN a ++ b -> x e. A) <-> A. x ((x IN a -> x e. A) /\ (x IN b -> x e. A))) ->
(A. x ((x IN a -> x e. A) /\ (x IN b -> x e. A)) <-> A. x (x IN a -> x e. A) /\ A. x (x IN b -> x e. A)) ->
(A. x (x IN a ++ b -> x e. A) <-> A. x (x IN a -> x e. A) /\ A. x (x IN b -> x e. A)) |
| 12 |
|
bitr |
(x IN a ++ b -> x e. A <-> x IN a \/ x IN b -> x e. A) ->
(x IN a \/ x IN b -> x e. A <-> (x IN a -> x e. A) /\ (x IN b -> x e. A)) ->
(x IN a ++ b -> x e. A <-> (x IN a -> x e. A) /\ (x IN b -> x e. A)) |
| 13 |
|
lmemappend |
x IN a ++ b <-> x IN a \/ x IN b |
| 14 |
13 |
imeq1i |
x IN a ++ b -> x e. A <-> x IN a \/ x IN b -> x e. A |
| 15 |
12, 14 |
ax_mp |
(x IN a \/ x IN b -> x e. A <-> (x IN a -> x e. A) /\ (x IN b -> x e. A)) -> (x IN a ++ b -> x e. A <-> (x IN a -> x e. A) /\ (x IN b -> x e. A)) |
| 16 |
|
imor |
x IN a \/ x IN b -> x e. A <-> (x IN a -> x e. A) /\ (x IN b -> x e. A) |
| 17 |
15, 16 |
ax_mp |
x IN a ++ b -> x e. A <-> (x IN a -> x e. A) /\ (x IN b -> x e. A) |
| 18 |
17 |
aleqi |
A. x (x IN a ++ b -> x e. A) <-> A. x ((x IN a -> x e. A) /\ (x IN b -> x e. A)) |
| 19 |
11, 18 |
ax_mp |
(A. x ((x IN a -> x e. A) /\ (x IN b -> x e. A)) <-> A. x (x IN a -> x e. A) /\ A. x (x IN b -> x e. A)) ->
(A. x (x IN a ++ b -> x e. A) <-> A. x (x IN a -> x e. A) /\ A. x (x IN b -> x e. A)) |
| 20 |
|
alan |
A. x ((x IN a -> x e. A) /\ (x IN b -> x e. A)) <-> A. x (x IN a -> x e. A) /\ A. x (x IN b -> x e. A) |
| 21 |
19, 20 |
ax_mp |
A. x (x IN a ++ b -> x e. A) <-> A. x (x IN a -> x e. A) /\ A. x (x IN b -> x e. A) |
| 22 |
10, 21 |
ax_mp |
all A a /\ all A b <-> A. x (x IN a ++ b -> x e. A) |
| 23 |
3, 22 |
ax_mp |
all A (a ++ b) <-> all A a /\ all A b |