Theorem allal2 | index | src |

theorem allal2 (A: set) (l: nat) {x: nat}:
  $ all A l <-> A. x (x IN l -> x e. A) $;
StepHypRefExpression
1 biid
all A l <-> all A l
2 1 conv all, lmem, subset
all A l <-> A. x (x IN l -> x e. A)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)