Theorem allal | index | src |

theorem allal (l: nat) {x: nat} (p: wff x):
  $ all {x | p} l <-> A. x (x IN l -> p) $;
StepHypRefExpression
1 bicom
(A. x (x IN l -> p) <-> all {x | p} l) -> (all {x | p} l <-> A. x (x IN l -> p))
2 ssab2
A. x (x e. lmems l -> p) <-> lmems l C_ {x | p}
3 2 conv all, lmem
A. x (x IN l -> p) <-> all {x | p} l
4 1, 3 ax_mp
all {x | p} l <-> A. x (x IN l -> p)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)