theorem lfneqd (_G: wff) (_F1 _F2: set) (_n1 _n2: nat):
$ _G -> _F1 == _F2 $ >
$ _G -> _n1 = _n2 $ >
$ _G -> lfn _F1 _n1 = lfn _F2 _n2 $;
Step | Hyp | Ref | Expression |
1 |
|
hyp _Fh |
_G -> _F1 == _F2 |
2 |
|
eqidd |
_G -> 0 = 0 |
3 |
|
hyp _nh |
_G -> _n1 = _n2 |
4 |
1, 2, 3 |
lfnauxeqd |
_G -> lfnaux _F1 0 _n1 = lfnaux _F2 0 _n2 |
5 |
4 |
conv lfn |
_G -> lfn _F1 _n1 = lfn _F2 _n2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)