Theorem lfnauxeqd | index | src |

theorem lfnauxeqd (_G: wff) (_F1 _F2: set) (_k1 _k2 _n1 _n2: nat):
  $ _G -> _F1 == _F2 $ >
  $ _G -> _k1 = _k2 $ >
  $ _G -> _n1 = _n2 $ >
  $ _G -> lfnaux _F1 _k1 _n1 = lfnaux _F2 _k2 _n2 $;
StepHypRefExpression
1 eqidd
_G -> 0 = 0
2 eqsidd
_G -> (\\ _1, \ x, suc x) == (\\ _1, \ x, suc x)
3 hyp _Fh
_G -> _F1 == _F2
4 eqidd
_G -> i = i
5 3, 4 appeqd
_G -> _F1 @ i = _F2 @ i
6 eqidd
_G -> ih = ih
7 5, 6 conseqd
_G -> _F1 @ i : ih = _F2 @ i : ih
8 7 lameqd
_G -> \ ih, _F1 @ i : ih == \ ih, _F2 @ i : ih
9 8 slameqd
_G -> (\\ i, \ ih, _F1 @ i : ih) == (\\ i, \ ih, _F2 @ i : ih)
10 9 slameqd
_G -> (\\ _2, \\ i, \ ih, _F1 @ i : ih) == (\\ _2, \\ i, \ ih, _F2 @ i : ih)
11 hyp _nh
_G -> _n1 = _n2
12 hyp _kh
_G -> _k1 = _k2
13 1, 2, 10, 11, 12 greceqd
_G -> grec 0 (\\ _1, \ x, suc x) (\\ _2, \\ i, \ ih, _F1 @ i : ih) _n1 _k1 = grec 0 (\\ _1, \ x, suc x) (\\ _2, \\ i, \ ih, _F2 @ i : ih) _n2 _k2
14 13 conv lfnaux
_G -> lfnaux _F1 _k1 _n1 = lfnaux _F2 _k2 _n2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)