Theorem slameqd | index | src |

theorem slameqd (_G: wff) {x: nat} (_A1 _A2: set x):
  $ _G -> _A1 == _A2 $ >
  $ _G -> (\\ x, _A1) == (\\ x, _A2) $;
StepHypRefExpression
1 eqidd
_G -> snd p, y = snd p, y
2 eqidd
_G -> fst p = fst p
3 hyp _Ah
_G -> _A1 == _A2
4 2, 3 sbseqd
_G -> S[fst p / x] _A1 == S[fst p / x] _A2
5 1, 4 eleqd
_G -> (snd p, y e. S[fst p / x] _A1 <-> snd p, y e. S[fst p / x] _A2)
6 5 abeqd
_G -> {y | snd p, y e. S[fst p / x] _A1} == {y | snd p, y e. S[fst p / x] _A2}
7 6 sabeqd
_G -> S\ p, {y | snd p, y e. S[fst p / x] _A1} == S\ p, {y | snd p, y e. S[fst p / x] _A2}
8 7 conv slam
_G -> (\\ x, _A1) == (\\ x, _A2)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)