Theorem sabeqd | index | src |

theorem sabeqd (_G: wff) {x: nat} (_A1 _A2: set x):
  $ _G -> _A1 == _A2 $ >
  $ _G -> S\ x, _A1 == S\ x, _A2 $;
StepHypRefExpression
1 eqidd
_G -> snd z = snd z
2 eqidd
_G -> fst z = fst z
3 hyp _Ah
_G -> _A1 == _A2
4 2, 3 sbseqd
_G -> S[fst z / x] _A1 == S[fst z / x] _A2
5 1, 4 eleqd
_G -> (snd z e. S[fst z / x] _A1 <-> snd z e. S[fst z / x] _A2)
6 5 abeqd
_G -> {z | snd z e. S[fst z / x] _A1} == {z | snd z e. S[fst z / x] _A2}
7 6 conv sab
_G -> S\ x, _A1 == S\ x, _A2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)