theorem nfsab {x y: nat} (A: set x y): $ FS/ y A $ > $ FS/ y S\ x, A $;
    | Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hyp h | FS/ y A  | 
        |
| 2 | 1 | nfsbs | FS/ y S[fst a1 / x] A  | 
        
| 3 | 2 | nfel2 | F/ y snd a1 e. S[fst a1 / x] A  | 
        
| 4 | 3 | nfab | FS/ y {a1 | snd a1 e. S[fst a1 / x] A} | 
        
| 5 | 4 | conv sab | FS/ y S\ x, A  |