Theorem sbseqd | index | src |

theorem sbseqd (G: wff) {x: nat} (a b: nat) (A B: set x):
  $ G -> a = b $ >
  $ G -> A == B $ >
  $ G -> S[a / x] A == S[b / x] B $;
StepHypRefExpression
1 hyp h1
G -> a = b
2 1 sbseq1d
G -> S[a / x] A == S[b / x] A
3 hyp h2
G -> A == B
4 3 sbseq2d
G -> S[b / x] A == S[b / x] B
5 2, 4 eqstrd
G -> S[a / x] A == S[b / x] B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)