theorem sbseqd (G: wff) {x: nat} (a b: nat) (A B: set x):
$ G -> a = b $ >
$ G -> A == B $ >
$ G -> S[a / x] A == S[b / x] B $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp h1 | G -> a = b |
|
| 2 | 1 | sbseq1d | G -> S[a / x] A == S[b / x] A |
| 3 | hyp h2 | G -> A == B |
|
| 4 | 3 | sbseq2d | G -> S[b / x] A == S[b / x] B |
| 5 | 2, 4 | eqstrd | G -> S[a / x] A == S[b / x] B |