theorem sbseht {x: nat} (a: nat) (A B: set x):
$ FS/ x B $ >
$ A. x (x = a -> A == B) -> S[a / x] A == B $;
Step | Hyp | Ref | Expression |
1 |
|
elsbs |
y e. S[a / x] A <-> [a / x] y e. A |
2 |
|
hyp h |
FS/ x B |
3 |
2 |
nfel2 |
F/ x y e. B |
4 |
3 |
sbeht |
A. x (x = a -> (y e. A <-> y e. B)) -> ([a / x] y e. A <-> y e. B) |
5 |
|
imim2 |
(A == B -> (y e. A <-> y e. B)) -> (x = a -> A == B) -> x = a -> (y e. A <-> y e. B) |
6 |
|
eleq2 |
A == B -> (y e. A <-> y e. B) |
7 |
5, 6 |
ax_mp |
(x = a -> A == B) -> x = a -> (y e. A <-> y e. B) |
8 |
7 |
alimi |
A. x (x = a -> A == B) -> A. x (x = a -> (y e. A <-> y e. B)) |
9 |
4, 8 |
syl |
A. x (x = a -> A == B) -> ([a / x] y e. A <-> y e. B) |
10 |
1, 9 |
syl5bb |
A. x (x = a -> A == B) -> (y e. S[a / x] A <-> y e. B) |
11 |
10 |
eqrd |
A. x (x = a -> A == B) -> S[a / x] A == B |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)