theorem sbsco {x y: nat} (a: nat) (A: set x):
$ S[a / y] S[y / x] A == S[a / x] A $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
([a / y] z e. S[y / x] A <-> [a / y] [y / x] z e. A) -> ([a / y] [y / x] z e. A <-> [a / x] z e. A) -> ([a / y] z e. S[y / x] A <-> [a / x] z e. A) |
2 |
|
elsbs |
z e. S[y / x] A <-> [y / x] z e. A |
3 |
2 |
sbeq2i |
[a / y] z e. S[y / x] A <-> [a / y] [y / x] z e. A |
4 |
1, 3 |
ax_mp |
([a / y] [y / x] z e. A <-> [a / x] z e. A) -> ([a / y] z e. S[y / x] A <-> [a / x] z e. A) |
5 |
|
sbco |
[a / y] [y / x] z e. A <-> [a / x] z e. A |
6 |
4, 5 |
ax_mp |
[a / y] z e. S[y / x] A <-> [a / x] z e. A |
7 |
6 |
abeqi |
{z | [a / y] z e. S[y / x] A} == {z | [a / x] z e. A} |
8 |
7 |
conv sbs |
S[a / y] S[y / x] A == S[a / x] A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)