Theorem prelslams | index | src |

theorem prelslams (a b: nat) {x: nat} (y: nat) (A: set x):
  $ (a, b), y e. (\\ x, A) <-> b, y e. S[a / x] A $;
StepHypRefExpression
1 sndpr
snd (a, b) = b
2 sndeq
p = a, b -> snd p = snd (a, b)
3 1, 2 syl6eq
p = a, b -> snd p = b
4 3 anwl
p = a, b /\ z = y -> snd p = b
5 anr
p = a, b /\ z = y -> z = y
6 4, 5 preqd
p = a, b /\ z = y -> snd p, z = b, y
7 fstpr
fst (a, b) = a
8 fsteq
p = a, b -> fst p = fst (a, b)
9 7, 8 syl6eq
p = a, b -> fst p = a
10 9 sbseq1d
p = a, b -> S[fst p / x] A == S[a / x] A
11 10 anwl
p = a, b /\ z = y -> S[fst p / x] A == S[a / x] A
12 6, 11 eleqd
p = a, b /\ z = y -> (snd p, z e. S[fst p / x] A <-> b, y e. S[a / x] A)
13 12 elabed
p = a, b -> (y e. {z | snd p, z e. S[fst p / x] A} <-> b, y e. S[a / x] A)
14 13 elsabe
(a, b), y e. S\ p, {z | snd p, z e. S[fst p / x] A} <-> b, y e. S[a / x] A
15 14 conv slam
(a, b), y e. (\\ x, A) <-> b, y e. S[a / x] A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)