theorem prelslams (a b: nat) {x: nat} (y: nat) (A: set x):
$ (a, b), y e. (\\ x, A) <-> b, y e. S[a / x] A $;
Step | Hyp | Ref | Expression |
1 |
|
sndpr |
snd (a, b) = b |
2 |
|
sndeq |
p = a, b -> snd p = snd (a, b) |
3 |
1, 2 |
syl6eq |
p = a, b -> snd p = b |
4 |
3 |
anwl |
p = a, b /\ z = y -> snd p = b |
5 |
|
anr |
p = a, b /\ z = y -> z = y |
6 |
4, 5 |
preqd |
p = a, b /\ z = y -> snd p, z = b, y |
7 |
|
fstpr |
fst (a, b) = a |
8 |
|
fsteq |
p = a, b -> fst p = fst (a, b) |
9 |
7, 8 |
syl6eq |
p = a, b -> fst p = a |
10 |
9 |
sbseq1d |
p = a, b -> S[fst p / x] A == S[a / x] A |
11 |
10 |
anwl |
p = a, b /\ z = y -> S[fst p / x] A == S[a / x] A |
12 |
6, 11 |
eleqd |
p = a, b /\ z = y -> (snd p, z e. S[fst p / x] A <-> b, y e. S[a / x] A) |
13 |
12 |
elabed |
p = a, b -> (y e. {z | snd p, z e. S[fst p / x] A} <-> b, y e. S[a / x] A) |
14 |
13 |
elsabe |
(a, b), y e. S\ p, {z | snd p, z e. S[fst p / x] A} <-> b, y e. S[a / x] A |
15 |
14 |
conv slam |
(a, b), y e. (\\ x, A) <-> b, y e. S[a / x] A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)