Theorem lfnauxeq | index | src |

theorem lfnauxeq (_F1 _F2: set) (_k1 _k2 _n1 _n2: nat):
  $ _F1 == _F2 ->
    _k1 = _k2 ->
    _n1 = _n2 ->
    lfnaux _F1 _k1 _n1 = lfnaux _F2 _k2 _n2 $;
StepHypRefExpression
1 anl
_F1 == _F2 /\ _k1 = _k2 -> _F1 == _F2
2 1 anwl
_F1 == _F2 /\ _k1 = _k2 /\ _n1 = _n2 -> _F1 == _F2
3 anr
_F1 == _F2 /\ _k1 = _k2 -> _k1 = _k2
4 3 anwl
_F1 == _F2 /\ _k1 = _k2 /\ _n1 = _n2 -> _k1 = _k2
5 anr
_F1 == _F2 /\ _k1 = _k2 /\ _n1 = _n2 -> _n1 = _n2
6 2, 4, 5 lfnauxeqd
_F1 == _F2 /\ _k1 = _k2 /\ _n1 = _n2 -> lfnaux _F1 _k1 _n1 = lfnaux _F2 _k2 _n2
7 6 exp
_F1 == _F2 /\ _k1 = _k2 -> _n1 = _n2 -> lfnaux _F1 _k1 _n1 = lfnaux _F2 _k2 _n2
8 7 exp
_F1 == _F2 -> _k1 = _k2 -> _n1 = _n2 -> lfnaux _F1 _k1 _n1 = lfnaux _F2 _k2 _n2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)