theorem lfnauxeq1d (_G: wff) (_F1 _F2: set) (k n: nat): $ _G -> _F1 == _F2 $ > $ _G -> lfnaux _F1 k n = lfnaux _F2 k n $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 |
hyp _h |
_G -> _F1 == _F2 |
|
2 |
_G -> k = k |
||
3 |
_G -> n = n |
||
4 |
_G -> lfnaux _F1 k n = lfnaux _F2 k n |