theorem lfnaux0 (F: set) (k: nat): $ lfnaux F k 0 = 0 $;
Step | Hyp | Ref | Expression |
1 |
|
grec0 |
grec 0 (\\ a1, \ a2, suc a2) (\\ a3, \\ a4, \ a5, F @ a4 : a5) 0 k = 0 |
2 |
1 |
conv lfnaux |
lfnaux F k 0 = 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)