Theorem lfnaux0 | index | src |

theorem lfnaux0 (F: set) (k: nat): $ lfnaux F k 0 = 0 $;
StepHypRefExpression
1 grec0
grec 0 (\\ a1, \ a2, suc a2) (\\ a3, \\ a4, \ a5, F @ a4 : a5) 0 k = 0
2 1 conv lfnaux
lfnaux F k 0 = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)