theorem nthlfn (F: set) (i n: nat): $ i < n -> nth i (lfn F n) = suc (F @ i) $;
Step | Hyp | Ref | Expression |
1 |
|
suceq |
F @ (0 + i) = F @ i -> suc (F @ (0 + i)) = suc (F @ i) |
2 |
|
appeq2 |
0 + i = i -> F @ (0 + i) = F @ i |
3 |
|
add01 |
0 + i = i |
4 |
2, 3 |
ax_mp |
F @ (0 + i) = F @ i |
5 |
1, 4 |
ax_mp |
suc (F @ (0 + i)) = suc (F @ i) |
6 |
|
lfnauxnth |
i < n -> nth i (lfnaux F 0 n) = suc (F @ (0 + i)) |
7 |
6 |
conv lfn |
i < n -> nth i (lfn F n) = suc (F @ (0 + i)) |
8 |
5, 7 |
syl6eq |
i < n -> nth i (lfn F n) = suc (F @ i) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)