Theorem nthlfn | index | src |

theorem nthlfn (F: set) (i n: nat): $ i < n -> nth i (lfn F n) = suc (F @ i) $;
StepHypRefExpression
1 suceq
F @ (0 + i) = F @ i -> suc (F @ (0 + i)) = suc (F @ i)
2 appeq2
0 + i = i -> F @ (0 + i) = F @ i
3 add01
0 + i = i
4 2, 3 ax_mp
F @ (0 + i) = F @ i
5 1, 4 ax_mp
suc (F @ (0 + i)) = suc (F @ i)
6 lfnauxnth
i < n -> nth i (lfnaux F 0 n) = suc (F @ (0 + i))
7 6 conv lfn
i < n -> nth i (lfn F n) = suc (F @ (0 + i))
8 5, 7 syl6eq
i < n -> nth i (lfn F n) = suc (F @ i)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)