theorem nthext2d (G: wff) (l1 l2 n: nat) {i: nat}:
$ G -> len l1 = n $ >
$ G -> len l2 = n $ >
$ G /\ i < n -> nth i l1 = nth i l2 $ >
$ G -> l1 = l2 $;
Step | Hyp | Ref | Expression |
1 |
|
lfnnth |
lfn (\ i, nth i l1 - 1) (len l1) = l1 |
2 |
|
lfnnth |
lfn (\ i, nth i l2 - 1) (len l2) = l2 |
3 |
|
hyp h3 |
G /\ i < n -> nth i l1 = nth i l2 |
4 |
|
nthne0 |
nth i l1 != 0 <-> i < len l1 |
5 |
4 |
conv ne |
~nth i l1 = 0 <-> i < len l1 |
6 |
|
hyp h1 |
G -> len l1 = n |
7 |
6 |
lteq2d |
G -> (i < len l1 <-> i < n) |
8 |
7 |
bi1d |
G -> i < len l1 -> i < n |
9 |
5, 8 |
syl5bi |
G -> ~nth i l1 = 0 -> i < n |
10 |
9 |
con1d |
G -> ~i < n -> nth i l1 = 0 |
11 |
10 |
imp |
G /\ ~i < n -> nth i l1 = 0 |
12 |
|
nthne0 |
nth i l2 != 0 <-> i < len l2 |
13 |
12 |
conv ne |
~nth i l2 = 0 <-> i < len l2 |
14 |
|
hyp h2 |
G -> len l2 = n |
15 |
14 |
lteq2d |
G -> (i < len l2 <-> i < n) |
16 |
15 |
bi1d |
G -> i < len l2 -> i < n |
17 |
13, 16 |
syl5bi |
G -> ~nth i l2 = 0 -> i < n |
18 |
17 |
con1d |
G -> ~i < n -> nth i l2 = 0 |
19 |
18 |
imp |
G /\ ~i < n -> nth i l2 = 0 |
20 |
11, 19 |
eqtr4d |
G /\ ~i < n -> nth i l1 = nth i l2 |
21 |
3, 20 |
casesda |
G -> nth i l1 = nth i l2 |
22 |
21 |
subeq1d |
G -> nth i l1 - 1 = nth i l2 - 1 |
23 |
22 |
lameqd |
G -> \ i, nth i l1 - 1 == \ i, nth i l2 - 1 |
24 |
6, 14 |
eqtr4d |
G -> len l1 = len l2 |
25 |
23, 24 |
lfneqd |
G -> lfn (\ i, nth i l1 - 1) (len l1) = lfn (\ i, nth i l2 - 1) (len l2) |
26 |
1, 2, 25 |
eqtr3g |
G -> l1 = l2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)