theorem nthext2d (G: wff) (l1 l2 n: nat) {i: nat}:
  $ G -> len l1 = n $ >
  $ G -> len l2 = n $ >
  $ G /\ i < n -> nth i l1 = nth i l2 $ >
  $ G -> l1 = l2 $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | lfnnth | lfn (\ i, nth i l1 - 1) (len l1) = l1 | 
        
          | 2 |  | lfnnth | lfn (\ i, nth i l2 - 1) (len l2) = l2 | 
        
          | 3 |  | hyp h3 | G /\ i < n -> nth i l1 = nth i l2 | 
        
          | 4 |  | nthne0 | nth i l1 != 0 <-> i < len l1 | 
        
          | 5 | 4 | conv ne | ~nth i l1 = 0 <-> i < len l1 | 
        
          | 6 |  | hyp h1 | G -> len l1 = n | 
        
          | 7 | 6 | lteq2d | G -> (i < len l1 <-> i < n) | 
        
          | 8 | 7 | bi1d | G -> i < len l1 -> i < n | 
        
          | 9 | 5, 8 | syl5bi | G -> ~nth i l1 = 0 -> i < n | 
        
          | 10 | 9 | con1d | G -> ~i < n -> nth i l1 = 0 | 
        
          | 11 | 10 | imp | G /\ ~i < n -> nth i l1 = 0 | 
        
          | 12 |  | nthne0 | nth i l2 != 0 <-> i < len l2 | 
        
          | 13 | 12 | conv ne | ~nth i l2 = 0 <-> i < len l2 | 
        
          | 14 |  | hyp h2 | G -> len l2 = n | 
        
          | 15 | 14 | lteq2d | G -> (i < len l2 <-> i < n) | 
        
          | 16 | 15 | bi1d | G -> i < len l2 -> i < n | 
        
          | 17 | 13, 16 | syl5bi | G -> ~nth i l2 = 0 -> i < n | 
        
          | 18 | 17 | con1d | G -> ~i < n -> nth i l2 = 0 | 
        
          | 19 | 18 | imp | G /\ ~i < n -> nth i l2 = 0 | 
        
          | 20 | 11, 19 | eqtr4d | G /\ ~i < n -> nth i l1 = nth i l2 | 
        
          | 21 | 3, 20 | casesda | G -> nth i l1 = nth i l2 | 
        
          | 22 | 21 | subeq1d | G -> nth i l1 - 1 = nth i l2 - 1 | 
        
          | 23 | 22 | lameqd | G -> \ i, nth i l1 - 1 == \ i, nth i l2 - 1 | 
        
          | 24 | 6, 14 | eqtr4d | G -> len l1 = len l2 | 
        
          | 25 | 23, 24 | lfneqd | G -> lfn (\ i, nth i l1 - 1) (len l1) = lfn (\ i, nth i l2 - 1) (len l2) | 
        
          | 26 | 1, 2, 25 | eqtr3g | G -> l1 = l2 | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)