Theorem nthne0 | index | src |

theorem nthne0 (l n: nat): $ nth n l != 0 <-> n < len l $;
StepHypRefExpression
1 con1
(~n < len l -> nth n l = 0) -> ~nth n l = 0 -> n < len l
2 1 conv ne
(~n < len l -> nth n l = 0) -> nth n l != 0 -> n < len l
3 ifneg
~n < len l -> if (n < len l) (suc (listfn l @ n)) 0 = 0
4 3 conv nth
~n < len l -> nth n l = 0
5 2, 4 ax_mp
nth n l != 0 -> n < len l
6 sucne0
nth n l = suc (listfn l @ n) -> nth n l != 0
7 ifpos
n < len l -> if (n < len l) (suc (listfn l @ n)) 0 = suc (listfn l @ n)
8 7 conv nth
n < len l -> nth n l = suc (listfn l @ n)
9 6, 8 syl
n < len l -> nth n l != 0
10 5, 9 ibii
nth n l != 0 <-> n < len l

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano1)