Theorem ntheq0 | index | src |

theorem ntheq0 (l n: nat): $ nth n l = 0 <-> len l <= n $;
StepHypRefExpression
1 bicom
(len l <= n <-> nth n l = 0) -> (nth n l = 0 <-> len l <= n)
2 bitr
(len l <= n <-> ~n < len l) -> (~n < len l <-> nth n l = 0) -> (len l <= n <-> nth n l = 0)
3 lenlt
len l <= n <-> ~n < len l
4 2, 3 ax_mp
(~n < len l <-> nth n l = 0) -> (len l <= n <-> nth n l = 0)
5 con1b
(~nth n l = 0 <-> n < len l) -> (~n < len l <-> nth n l = 0)
6 nthne0
nth n l != 0 <-> n < len l
7 6 conv ne
~nth n l = 0 <-> n < len l
8 5, 7 ax_mp
~n < len l <-> nth n l = 0
9 4, 8 ax_mp
len l <= n <-> nth n l = 0
10 1, 9 ax_mp
nth n l = 0 <-> len l <= n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano1, peano2, peano5, addeq, add0, addS)