theorem ntheq0 (l n: nat): $ nth n l = 0 <-> len l <= n $;
Step | Hyp | Ref | Expression |
---|---|---|---|
3 |
len l <= n <-> ~n < len l |
||
6 |
nth n l != 0 <-> n < len l |
||
7 |
conv ne |
~nth n l = 0 <-> n < len l |
|
8 |
~n < len l <-> nth n l = 0 |
||
9 |
bitr* |
len l <= n <-> nth n l = 0 |
|
10 |
nth n l = 0 <-> len l <= n |