| Step | Hyp | Ref | Expression |
| 1 |
|
addcan1 |
(u * b - x * q) * a + (x * q * a + suc (y * q) * b) = (u * a - suc (y * q)) * b + r + (x * q * a + suc (y * q) * b) <->
(u * b - x * q) * a = (u * a - suc (y * q)) * b + r |
| 2 |
|
addass |
(u * b - x * q) * a + x * q * a + suc (y * q) * b = (u * b - x * q) * a + (x * q * a + suc (y * q) * b) |
| 3 |
|
addmul |
(u * b - x * q + x * q) * a = (u * b - x * q) * a + x * q * a |
| 4 |
|
npcan |
x * q <= u * b -> u * b - x * q + x * q = u * b |
| 5 |
|
hyp h5 |
G -> x * q <= u |
| 6 |
|
leeq1 |
u * 1 = u -> (u * 1 <= u * b <-> u <= u * b) |
| 7 |
|
mul12 |
u * 1 = u |
| 8 |
6, 7 |
ax_mp |
u * 1 <= u * b <-> u <= u * b |
| 9 |
|
lemul2a |
1 <= b -> u * 1 <= u * b |
| 10 |
|
lt01 |
0 < b <-> b != 0 |
| 11 |
10 |
conv d1, lt |
1 <= b <-> b != 0 |
| 12 |
|
hyp h3 |
G -> b != 0 |
| 13 |
11, 12 |
sylibr |
G -> 1 <= b |
| 14 |
9, 13 |
syl |
G -> u * 1 <= u * b |
| 15 |
8, 14 |
sylib |
G -> u <= u * b |
| 16 |
5, 15 |
letrd |
G -> x * q <= u * b |
| 17 |
4, 16 |
syl |
G -> u * b - x * q + x * q = u * b |
| 18 |
17 |
muleq1d |
G -> (u * b - x * q + x * q) * a = u * b * a |
| 19 |
3, 18 |
syl5eqr |
G -> (u * b - x * q) * a + x * q * a = u * b * a |
| 20 |
19 |
addeq1d |
G -> (u * b - x * q) * a + x * q * a + suc (y * q) * b = u * b * a + suc (y * q) * b |
| 21 |
|
addeq2 |
x * q * a + suc (y * q) * b = suc (y * q) * b + x * q * a ->
(u * a - suc (y * q)) * b + r + (x * q * a + suc (y * q) * b) = (u * a - suc (y * q)) * b + r + (suc (y * q) * b + x * q * a) |
| 22 |
|
addcom |
x * q * a + suc (y * q) * b = suc (y * q) * b + x * q * a |
| 23 |
21, 22 |
ax_mp |
(u * a - suc (y * q)) * b + r + (x * q * a + suc (y * q) * b) = (u * a - suc (y * q)) * b + r + (suc (y * q) * b + x * q * a) |
| 24 |
|
addass |
(u * a - suc (y * q)) * b + r + suc (y * q) * b + x * q * a = (u * a - suc (y * q)) * b + r + (suc (y * q) * b + x * q * a) |
| 25 |
|
addrass |
(u * a - suc (y * q)) * b + r + suc (y * q) * b = (u * a - suc (y * q)) * b + suc (y * q) * b + r |
| 26 |
|
addmul |
(u * a - suc (y * q) + suc (y * q)) * b = (u * a - suc (y * q)) * b + suc (y * q) * b |
| 27 |
|
npcan |
suc (y * q) <= u * a -> u * a - suc (y * q) + suc (y * q) = u * a |
| 28 |
|
hyp h6 |
G -> y * q < u |
| 29 |
28 |
conv lt |
G -> suc (y * q) <= u |
| 30 |
|
leeq1 |
u * 1 = u -> (u * 1 <= u * a <-> u <= u * a) |
| 31 |
30, 7 |
ax_mp |
u * 1 <= u * a <-> u <= u * a |
| 32 |
|
lemul2a |
1 <= a -> u * 1 <= u * a |
| 33 |
|
lt01 |
0 < a <-> a != 0 |
| 34 |
33 |
conv d1, lt |
1 <= a <-> a != 0 |
| 35 |
|
hyp h1 |
G -> a != 0 |
| 36 |
34, 35 |
sylibr |
G -> 1 <= a |
| 37 |
32, 36 |
syl |
G -> u * 1 <= u * a |
| 38 |
31, 37 |
sylib |
G -> u <= u * a |
| 39 |
29, 38 |
letrd |
G -> suc (y * q) <= u * a |
| 40 |
27, 39 |
syl |
G -> u * a - suc (y * q) + suc (y * q) = u * a |
| 41 |
40 |
muleq1d |
G -> (u * a - suc (y * q) + suc (y * q)) * b = u * a * b |
| 42 |
26, 41 |
syl5eqr |
G -> (u * a - suc (y * q)) * b + suc (y * q) * b = u * a * b |
| 43 |
42 |
addeq1d |
G -> (u * a - suc (y * q)) * b + suc (y * q) * b + r = u * a * b + r |
| 44 |
25, 43 |
syl5eq |
G -> (u * a - suc (y * q)) * b + r + suc (y * q) * b = u * a * b + r |
| 45 |
44 |
addeq1d |
G -> (u * a - suc (y * q)) * b + r + suc (y * q) * b + x * q * a = u * a * b + r + x * q * a |
| 46 |
|
addrass |
u * a * b + r + x * q * a = u * a * b + x * q * a + r |
| 47 |
|
addass |
u * a * b + x * q * a + r = u * a * b + (x * q * a + r) |
| 48 |
|
addeq1 |
u * b * a = u * a * b -> u * b * a + suc (y * q) * b = u * a * b + suc (y * q) * b |
| 49 |
|
mulrass |
u * b * a = u * a * b |
| 50 |
48, 49 |
ax_mp |
u * b * a + suc (y * q) * b = u * a * b + suc (y * q) * b |
| 51 |
|
mulS1 |
suc (y * q) * b = y * q * b + b |
| 52 |
|
hyp h4 |
G -> d * q + r = b |
| 53 |
52 |
addeq2d |
G -> y * q * b + (d * q + r) = y * q * b + b |
| 54 |
|
addass |
y * q * b + d * q + r = y * q * b + (d * q + r) |
| 55 |
|
addeq1 |
y * q * b = y * b * q -> y * q * b + d * q = y * b * q + d * q |
| 56 |
|
mulrass |
y * q * b = y * b * q |
| 57 |
55, 56 |
ax_mp |
y * q * b + d * q = y * b * q + d * q |
| 58 |
|
addmul |
(y * b + d) * q = y * b * q + d * q |
| 59 |
|
mulrass |
x * a * q = x * q * a |
| 60 |
|
hyp h2 |
G -> x * a = y * b + d |
| 61 |
60 |
eqcomd |
G -> y * b + d = x * a |
| 62 |
61 |
muleq1d |
G -> (y * b + d) * q = x * a * q |
| 63 |
59, 62 |
syl6eq |
G -> (y * b + d) * q = x * q * a |
| 64 |
58, 63 |
syl5eqr |
G -> y * b * q + d * q = x * q * a |
| 65 |
57, 64 |
syl5eq |
G -> y * q * b + d * q = x * q * a |
| 66 |
65 |
addeq1d |
G -> y * q * b + d * q + r = x * q * a + r |
| 67 |
54, 66 |
syl5eqr |
G -> y * q * b + (d * q + r) = x * q * a + r |
| 68 |
53, 67 |
eqtr3d |
G -> y * q * b + b = x * q * a + r |
| 69 |
51, 68 |
syl5eq |
G -> suc (y * q) * b = x * q * a + r |
| 70 |
69 |
addeq2d |
G -> u * a * b + suc (y * q) * b = u * a * b + (x * q * a + r) |
| 71 |
50, 70 |
syl5eq |
G -> u * b * a + suc (y * q) * b = u * a * b + (x * q * a + r) |
| 72 |
47, 71 |
syl6eqr |
G -> u * b * a + suc (y * q) * b = u * a * b + x * q * a + r |
| 73 |
46, 72 |
syl6eqr |
G -> u * b * a + suc (y * q) * b = u * a * b + r + x * q * a |
| 74 |
45, 73 |
eqtr4d |
G -> (u * a - suc (y * q)) * b + r + suc (y * q) * b + x * q * a = u * b * a + suc (y * q) * b |
| 75 |
24, 74 |
syl5eqr |
G -> (u * a - suc (y * q)) * b + r + (suc (y * q) * b + x * q * a) = u * b * a + suc (y * q) * b |
| 76 |
23, 75 |
syl5eq |
G -> (u * a - suc (y * q)) * b + r + (x * q * a + suc (y * q) * b) = u * b * a + suc (y * q) * b |
| 77 |
20, 76 |
eqtr4d |
G -> (u * b - x * q) * a + x * q * a + suc (y * q) * b = (u * a - suc (y * q)) * b + r + (x * q * a + suc (y * q) * b) |
| 78 |
2, 77 |
syl5eqr |
G -> (u * b - x * q) * a + (x * q * a + suc (y * q) * b) = (u * a - suc (y * q)) * b + r + (x * q * a + suc (y * q) * b) |
| 79 |
1, 78 |
sylib |
G -> (u * b - x * q) * a = (u * a - suc (y * q)) * b + r |