Theorem addmul | index | src |

theorem addmul (a b c: nat): $ (a + b) * c = a * c + b * c $;
StepHypRefExpression
1 eqtr
(a + b) * c = c * (a + b) -> c * (a + b) = a * c + b * c -> (a + b) * c = a * c + b * c
2 mulcom
(a + b) * c = c * (a + b)
3 1, 2 ax_mp
c * (a + b) = a * c + b * c -> (a + b) * c = a * c + b * c
4 eqtr
c * (a + b) = c * a + c * b -> c * a + c * b = a * c + b * c -> c * (a + b) = a * c + b * c
5 muladd
c * (a + b) = c * a + c * b
6 4, 5 ax_mp
c * a + c * b = a * c + b * c -> c * (a + b) = a * c + b * c
7 addeq
c * a = a * c -> c * b = b * c -> c * a + c * b = a * c + b * c
8 mulcom
c * a = a * c
9 7, 8 ax_mp
c * b = b * c -> c * a + c * b = a * c + b * c
10 mulcom
c * b = b * c
11 9, 10 ax_mp
c * a + c * b = a * c + b * c
12 6, 11 ax_mp
c * (a + b) = a * c + b * c
13 3, 12 ax_mp
(a + b) * c = a * c + b * c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)