| Step | Hyp | Ref | Expression |
| 1 |
|
muleq2 |
x = c -> a * b * x = a * b * c |
| 2 |
|
muleq2 |
x = c -> b * x = b * c |
| 3 |
2 |
muleq2d |
x = c -> a * (b * x) = a * (b * c) |
| 4 |
1, 3 |
eqeqd |
x = c -> (a * b * x = a * (b * x) <-> a * b * c = a * (b * c)) |
| 5 |
|
muleq2 |
x = 0 -> a * b * x = a * b * 0 |
| 6 |
|
muleq2 |
x = 0 -> b * x = b * 0 |
| 7 |
6 |
muleq2d |
x = 0 -> a * (b * x) = a * (b * 0) |
| 8 |
5, 7 |
eqeqd |
x = 0 -> (a * b * x = a * (b * x) <-> a * b * 0 = a * (b * 0)) |
| 9 |
|
muleq2 |
x = y -> a * b * x = a * b * y |
| 10 |
|
muleq2 |
x = y -> b * x = b * y |
| 11 |
10 |
muleq2d |
x = y -> a * (b * x) = a * (b * y) |
| 12 |
9, 11 |
eqeqd |
x = y -> (a * b * x = a * (b * x) <-> a * b * y = a * (b * y)) |
| 13 |
|
muleq2 |
x = suc y -> a * b * x = a * b * suc y |
| 14 |
|
muleq2 |
x = suc y -> b * x = b * suc y |
| 15 |
14 |
muleq2d |
x = suc y -> a * (b * x) = a * (b * suc y) |
| 16 |
13, 15 |
eqeqd |
x = suc y -> (a * b * x = a * (b * x) <-> a * b * suc y = a * (b * suc y)) |
| 17 |
|
eqtr4 |
a * b * 0 = 0 -> a * (b * 0) = 0 -> a * b * 0 = a * (b * 0) |
| 18 |
|
mul0 |
a * b * 0 = 0 |
| 19 |
17, 18 |
ax_mp |
a * (b * 0) = 0 -> a * b * 0 = a * (b * 0) |
| 20 |
|
eqtr |
a * (b * 0) = a * 0 -> a * 0 = 0 -> a * (b * 0) = 0 |
| 21 |
|
muleq2 |
b * 0 = 0 -> a * (b * 0) = a * 0 |
| 22 |
|
mul0 |
b * 0 = 0 |
| 23 |
21, 22 |
ax_mp |
a * (b * 0) = a * 0 |
| 24 |
20, 23 |
ax_mp |
a * 0 = 0 -> a * (b * 0) = 0 |
| 25 |
|
mul0 |
a * 0 = 0 |
| 26 |
24, 25 |
ax_mp |
a * (b * 0) = 0 |
| 27 |
19, 26 |
ax_mp |
a * b * 0 = a * (b * 0) |
| 28 |
|
mulS |
a * b * suc y = a * b * y + a * b |
| 29 |
|
eqtr |
a * (b * suc y) = a * (b * y + b) -> a * (b * y + b) = a * (b * y) + a * b -> a * (b * suc y) = a * (b * y) + a * b |
| 30 |
|
muleq2 |
b * suc y = b * y + b -> a * (b * suc y) = a * (b * y + b) |
| 31 |
|
mulS |
b * suc y = b * y + b |
| 32 |
30, 31 |
ax_mp |
a * (b * suc y) = a * (b * y + b) |
| 33 |
29, 32 |
ax_mp |
a * (b * y + b) = a * (b * y) + a * b -> a * (b * suc y) = a * (b * y) + a * b |
| 34 |
|
muladd |
a * (b * y + b) = a * (b * y) + a * b |
| 35 |
33, 34 |
ax_mp |
a * (b * suc y) = a * (b * y) + a * b |
| 36 |
|
addeq1 |
a * b * y = a * (b * y) -> a * b * y + a * b = a * (b * y) + a * b |
| 37 |
28, 35, 36 |
eqtr4g |
a * b * y = a * (b * y) -> a * b * suc y = a * (b * suc y) |
| 38 |
4, 8, 12, 16, 27, 37 |
ind |
a * b * c = a * (b * c) |