Theorem mullass | index | src |

theorem mullass (a b c: nat): $ a * (b * c) = b * (a * c) $;
StepHypRefExpression
1 eqtr3
a * b * c = a * (b * c) -> a * b * c = b * (a * c) -> a * (b * c) = b * (a * c)
2 mulass
a * b * c = a * (b * c)
3 1, 2 ax_mp
a * b * c = b * (a * c) -> a * (b * c) = b * (a * c)
4 eqtr
a * b * c = b * a * c -> b * a * c = b * (a * c) -> a * b * c = b * (a * c)
5 muleq1
a * b = b * a -> a * b * c = b * a * c
6 mulcom
a * b = b * a
7 5, 6 ax_mp
a * b * c = b * a * c
8 4, 7 ax_mp
b * a * c = b * (a * c) -> a * b * c = b * (a * c)
9 mulass
b * a * c = b * (a * c)
10 8, 9 ax_mp
a * b * c = b * (a * c)
11 3, 10 ax_mp
a * (b * c) = b * (a * c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)