| Step | Hyp | Ref | Expression |
| 1 |
|
eqidd |
a = n -> z = z |
| 2 |
|
eqsidd |
a = n -> K == K |
| 3 |
|
eqsidd |
a = n -> F == F |
| 4 |
|
eqidd |
a = n -> suc x = suc x |
| 5 |
|
id |
a = n -> a = n |
| 6 |
|
eqidd |
a = n -> k = k |
| 7 |
1, 2, 3, 4, 5, 6 |
grecaux2eqd |
a = n -> grecaux2 z K F (suc x) a k = grecaux2 z K F (suc x) n k |
| 8 |
|
eqidd |
a = n -> x = x |
| 9 |
|
eqidd |
a = n -> K @ (x, k) = K @ (x, k) |
| 10 |
1, 2, 3, 8, 5, 9 |
grecaux2eqd |
a = n -> grecaux2 z K F x a (K @ (x, k)) = grecaux2 z K F x n (K @ (x, k)) |
| 11 |
7, 10 |
eqeqd |
a = n -> (grecaux2 z K F (suc x) a k = grecaux2 z K F x a (K @ (x, k)) <-> grecaux2 z K F (suc x) n k = grecaux2 z K F x n (K @ (x, k))) |
| 12 |
|
eqidd |
a = 0 -> z = z |
| 13 |
|
eqsidd |
a = 0 -> K == K |
| 14 |
|
eqsidd |
a = 0 -> F == F |
| 15 |
|
eqidd |
a = 0 -> suc x = suc x |
| 16 |
|
id |
a = 0 -> a = 0 |
| 17 |
|
eqidd |
a = 0 -> k = k |
| 18 |
12, 13, 14, 15, 16, 17 |
grecaux2eqd |
a = 0 -> grecaux2 z K F (suc x) a k = grecaux2 z K F (suc x) 0 k |
| 19 |
|
eqidd |
a = 0 -> x = x |
| 20 |
|
eqidd |
a = 0 -> K @ (x, k) = K @ (x, k) |
| 21 |
12, 13, 14, 19, 16, 20 |
grecaux2eqd |
a = 0 -> grecaux2 z K F x a (K @ (x, k)) = grecaux2 z K F x 0 (K @ (x, k)) |
| 22 |
18, 21 |
eqeqd |
a = 0 -> (grecaux2 z K F (suc x) a k = grecaux2 z K F x a (K @ (x, k)) <-> grecaux2 z K F (suc x) 0 k = grecaux2 z K F x 0 (K @ (x, k))) |
| 23 |
|
eqidd |
a = b -> z = z |
| 24 |
|
eqsidd |
a = b -> K == K |
| 25 |
|
eqsidd |
a = b -> F == F |
| 26 |
|
eqidd |
a = b -> suc x = suc x |
| 27 |
|
id |
a = b -> a = b |
| 28 |
|
eqidd |
a = b -> k = k |
| 29 |
23, 24, 25, 26, 27, 28 |
grecaux2eqd |
a = b -> grecaux2 z K F (suc x) a k = grecaux2 z K F (suc x) b k |
| 30 |
|
eqidd |
a = b -> x = x |
| 31 |
|
eqidd |
a = b -> K @ (x, k) = K @ (x, k) |
| 32 |
23, 24, 25, 30, 27, 31 |
grecaux2eqd |
a = b -> grecaux2 z K F x a (K @ (x, k)) = grecaux2 z K F x b (K @ (x, k)) |
| 33 |
29, 32 |
eqeqd |
a = b -> (grecaux2 z K F (suc x) a k = grecaux2 z K F x a (K @ (x, k)) <-> grecaux2 z K F (suc x) b k = grecaux2 z K F x b (K @ (x, k))) |
| 34 |
|
eqidd |
a = suc b -> z = z |
| 35 |
|
eqsidd |
a = suc b -> K == K |
| 36 |
|
eqsidd |
a = suc b -> F == F |
| 37 |
|
eqidd |
a = suc b -> suc x = suc x |
| 38 |
|
id |
a = suc b -> a = suc b |
| 39 |
|
eqidd |
a = suc b -> k = k |
| 40 |
34, 35, 36, 37, 38, 39 |
grecaux2eqd |
a = suc b -> grecaux2 z K F (suc x) a k = grecaux2 z K F (suc x) (suc b) k |
| 41 |
|
eqidd |
a = suc b -> x = x |
| 42 |
|
eqidd |
a = suc b -> K @ (x, k) = K @ (x, k) |
| 43 |
34, 35, 36, 41, 38, 42 |
grecaux2eqd |
a = suc b -> grecaux2 z K F x a (K @ (x, k)) = grecaux2 z K F x (suc b) (K @ (x, k)) |
| 44 |
40, 43 |
eqeqd |
a = suc b -> (grecaux2 z K F (suc x) a k = grecaux2 z K F x a (K @ (x, k)) <-> grecaux2 z K F (suc x) (suc b) k = grecaux2 z K F x (suc b) (K @ (x, k))) |
| 45 |
|
eqtr4 |
grecaux2 z K F (suc x) 0 k = z -> grecaux2 z K F x 0 (K @ (x, k)) = z -> grecaux2 z K F (suc x) 0 k = grecaux2 z K F x 0 (K @ (x, k)) |
| 46 |
|
grecaux20 |
grecaux2 z K F (suc x) 0 k = z |
| 47 |
45, 46 |
ax_mp |
grecaux2 z K F x 0 (K @ (x, k)) = z -> grecaux2 z K F (suc x) 0 k = grecaux2 z K F x 0 (K @ (x, k)) |
| 48 |
|
grecaux20 |
grecaux2 z K F x 0 (K @ (x, k)) = z |
| 49 |
47, 48 |
ax_mp |
grecaux2 z K F (suc x) 0 k = grecaux2 z K F x 0 (K @ (x, k)) |
| 50 |
49 |
a1i |
n <= x -> grecaux2 z K F (suc x) 0 k = grecaux2 z K F x 0 (K @ (x, k)) |
| 51 |
|
grecaux2S |
grecaux2 z K F (suc x) (suc b) k = F @ (b, grecaux1 K (suc x) k (suc x - suc b), grecaux2 z K F (suc x) b k) |
| 52 |
|
grecaux2S |
grecaux2 z K F x (suc b) (K @ (x, k)) = F @ (b, grecaux1 K x (K @ (x, k)) (x - suc b), grecaux2 z K F x b (K @ (x, k))) |
| 53 |
|
grecaux1Sx |
grecaux1 K (suc x) k (suc (x - suc b)) = grecaux1 K x (K @ (x, k)) (x - suc b) |
| 54 |
|
subSS |
suc x - suc b = x - b |
| 55 |
|
eqsub1 |
suc (x - suc b) + b = x -> x - b = suc (x - suc b) |
| 56 |
|
addSass |
suc (x - suc b) + b = x - suc b + suc b |
| 57 |
|
npcan |
suc b <= x -> x - suc b + suc b = x |
| 58 |
|
letr |
suc b <= n -> n <= x -> suc b <= x |
| 59 |
58 |
conv lt |
b < n -> n <= x -> suc b <= x |
| 60 |
59 |
impcom |
n <= x /\ b < n -> suc b <= x |
| 61 |
57, 60 |
syl |
n <= x /\ b < n -> x - suc b + suc b = x |
| 62 |
56, 61 |
syl5eq |
n <= x /\ b < n -> suc (x - suc b) + b = x |
| 63 |
55, 62 |
syl |
n <= x /\ b < n -> x - b = suc (x - suc b) |
| 64 |
54, 63 |
syl5eq |
n <= x /\ b < n -> suc x - suc b = suc (x - suc b) |
| 65 |
64 |
grecaux1eq4d |
n <= x /\ b < n -> grecaux1 K (suc x) k (suc x - suc b) = grecaux1 K (suc x) k (suc (x - suc b)) |
| 66 |
53, 65 |
syl6eq |
n <= x /\ b < n -> grecaux1 K (suc x) k (suc x - suc b) = grecaux1 K x (K @ (x, k)) (x - suc b) |
| 67 |
66 |
anwl |
n <= x /\ b < n /\ grecaux2 z K F (suc x) b k = grecaux2 z K F x b (K @ (x, k)) -> grecaux1 K (suc x) k (suc x - suc b) = grecaux1 K x (K @ (x, k)) (x - suc b) |
| 68 |
|
anr |
n <= x /\ b < n /\ grecaux2 z K F (suc x) b k = grecaux2 z K F x b (K @ (x, k)) -> grecaux2 z K F (suc x) b k = grecaux2 z K F x b (K @ (x, k)) |
| 69 |
67, 68 |
preqd |
n <= x /\ b < n /\ grecaux2 z K F (suc x) b k = grecaux2 z K F x b (K @ (x, k)) ->
grecaux1 K (suc x) k (suc x - suc b), grecaux2 z K F (suc x) b k = grecaux1 K x (K @ (x, k)) (x - suc b), grecaux2 z K F x b (K @ (x, k)) |
| 70 |
69 |
preq2d |
n <= x /\ b < n /\ grecaux2 z K F (suc x) b k = grecaux2 z K F x b (K @ (x, k)) ->
b, grecaux1 K (suc x) k (suc x - suc b), grecaux2 z K F (suc x) b k = b, grecaux1 K x (K @ (x, k)) (x - suc b), grecaux2 z K F x b (K @ (x, k)) |
| 71 |
70 |
appeq2d |
n <= x /\ b < n /\ grecaux2 z K F (suc x) b k = grecaux2 z K F x b (K @ (x, k)) ->
F @ (b, grecaux1 K (suc x) k (suc x - suc b), grecaux2 z K F (suc x) b k) = F @ (b, grecaux1 K x (K @ (x, k)) (x - suc b), grecaux2 z K F x b (K @ (x, k))) |
| 72 |
51, 52, 71 |
eqtr4g |
n <= x /\ b < n /\ grecaux2 z K F (suc x) b k = grecaux2 z K F x b (K @ (x, k)) -> grecaux2 z K F (suc x) (suc b) k = grecaux2 z K F x (suc b) (K @ (x, k)) |
| 73 |
11, 22, 33, 44, 50, 72 |
indlt |
n <= x -> grecaux2 z K F (suc x) n k = grecaux2 z K F x n (K @ (x, k)) |