theorem grecaux2eqd (_G: wff) (_z1 _z2: nat) (_K1 _K2 _F1 _F2: set)
  (_x1 _x2 _n1 _n2 _k1 _k2: nat):
  $ _G -> _z1 = _z2 $ >
  $ _G -> _K1 == _K2 $ >
  $ _G -> _F1 == _F2 $ >
  $ _G -> _x1 = _x2 $ >
  $ _G -> _n1 = _n2 $ >
  $ _G -> _k1 = _k2 $ >
  $ _G -> grecaux2 _z1 _K1 _F1 _x1 _n1 _k1 = grecaux2 _z2 _K2 _F2 _x2 _n2 _k2 $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          hyp _zh | 
          _G -> _z1 = _z2  | 
        
        
          | 2 | 
           | 
          hyp _Fh | 
          _G -> _F1 == _F2  | 
        
        
          | 3 | 
           | 
          eqidd | 
          _G -> u = u  | 
        
        
          | 4 | 
           | 
          hyp _Kh | 
          _G -> _K1 == _K2  | 
        
        
          | 5 | 
           | 
          hyp _xh | 
          _G -> _x1 = _x2  | 
        
        
          | 6 | 
           | 
          hyp _kh | 
          _G -> _k1 = _k2  | 
        
        
          | 7 | 
           | 
          eqidd | 
          _G -> suc u = suc u  | 
        
        
          | 8 | 
          5, 7 | 
          subeqd | 
          _G -> _x1 - suc u = _x2 - suc u  | 
        
        
          | 9 | 
          4, 5, 6, 8 | 
          grecaux1eqd | 
          _G -> grecaux1 _K1 _x1 _k1 (_x1 - suc u) = grecaux1 _K2 _x2 _k2 (_x2 - suc u)  | 
        
        
          | 10 | 
           | 
          eqidd | 
          _G -> i = i  | 
        
        
          | 11 | 
          9, 10 | 
          preqd | 
          _G -> grecaux1 _K1 _x1 _k1 (_x1 - suc u), i = grecaux1 _K2 _x2 _k2 (_x2 - suc u), i  | 
        
        
          | 12 | 
          3, 11 | 
          preqd | 
          _G -> u, grecaux1 _K1 _x1 _k1 (_x1 - suc u), i = u, grecaux1 _K2 _x2 _k2 (_x2 - suc u), i  | 
        
        
          | 13 | 
          2, 12 | 
          appeqd | 
          _G -> _F1 @ (u, grecaux1 _K1 _x1 _k1 (_x1 - suc u), i) = _F2 @ (u, grecaux1 _K2 _x2 _k2 (_x2 - suc u), i)  | 
        
        
          | 14 | 
          13 | 
          lameqd | 
          _G -> \ i, _F1 @ (u, grecaux1 _K1 _x1 _k1 (_x1 - suc u), i) == \ i, _F2 @ (u, grecaux1 _K2 _x2 _k2 (_x2 - suc u), i)  | 
        
        
          | 15 | 
          14 | 
          slameqd | 
          _G -> (\\ u, \ i, _F1 @ (u, grecaux1 _K1 _x1 _k1 (_x1 - suc u), i)) == (\\ u, \ i, _F2 @ (u, grecaux1 _K2 _x2 _k2 (_x2 - suc u), i))  | 
        
        
          | 16 | 
           | 
          hyp _nh | 
          _G -> _n1 = _n2  | 
        
        
          | 17 | 
          1, 15, 16 | 
          recneqd | 
          _G -> recn _z1 (\\ u, \ i, _F1 @ (u, grecaux1 _K1 _x1 _k1 (_x1 - suc u), i)) _n1 = recn _z2 (\\ u, \ i, _F2 @ (u, grecaux1 _K2 _x2 _k2 (_x2 - suc u), i)) _n2  | 
        
        
          | 18 | 
          17 | 
          conv grecaux2 | 
          _G -> grecaux2 _z1 _K1 _F1 _x1 _n1 _k1 = grecaux2 _z2 _K2 _F2 _x2 _n2 _k2  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano2,
      addeq,
      muleq)