Theorem grecaux2eqd | index | src |

theorem grecaux2eqd (_G: wff) (_z1 _z2: nat) (_K1 _K2 _F1 _F2: set)
  (_x1 _x2 _n1 _n2 _k1 _k2: nat):
  $ _G -> _z1 = _z2 $ >
  $ _G -> _K1 == _K2 $ >
  $ _G -> _F1 == _F2 $ >
  $ _G -> _x1 = _x2 $ >
  $ _G -> _n1 = _n2 $ >
  $ _G -> _k1 = _k2 $ >
  $ _G -> grecaux2 _z1 _K1 _F1 _x1 _n1 _k1 = grecaux2 _z2 _K2 _F2 _x2 _n2 _k2 $;
StepHypRefExpression
1 hyp _zh
_G -> _z1 = _z2
2 hyp _Fh
_G -> _F1 == _F2
3 eqidd
_G -> u = u
4 hyp _Kh
_G -> _K1 == _K2
5 hyp _xh
_G -> _x1 = _x2
6 hyp _kh
_G -> _k1 = _k2
7 eqidd
_G -> suc u = suc u
8 5, 7 subeqd
_G -> _x1 - suc u = _x2 - suc u
9 4, 5, 6, 8 grecaux1eqd
_G -> grecaux1 _K1 _x1 _k1 (_x1 - suc u) = grecaux1 _K2 _x2 _k2 (_x2 - suc u)
10 eqidd
_G -> i = i
11 9, 10 preqd
_G -> grecaux1 _K1 _x1 _k1 (_x1 - suc u), i = grecaux1 _K2 _x2 _k2 (_x2 - suc u), i
12 3, 11 preqd
_G -> u, grecaux1 _K1 _x1 _k1 (_x1 - suc u), i = u, grecaux1 _K2 _x2 _k2 (_x2 - suc u), i
13 2, 12 appeqd
_G -> _F1 @ (u, grecaux1 _K1 _x1 _k1 (_x1 - suc u), i) = _F2 @ (u, grecaux1 _K2 _x2 _k2 (_x2 - suc u), i)
14 13 lameqd
_G -> \ i, _F1 @ (u, grecaux1 _K1 _x1 _k1 (_x1 - suc u), i) == \ i, _F2 @ (u, grecaux1 _K2 _x2 _k2 (_x2 - suc u), i)
15 14 slameqd
_G -> (\\ u, \ i, _F1 @ (u, grecaux1 _K1 _x1 _k1 (_x1 - suc u), i)) == (\\ u, \ i, _F2 @ (u, grecaux1 _K2 _x2 _k2 (_x2 - suc u), i))
16 hyp _nh
_G -> _n1 = _n2
17 1, 15, 16 recneqd
_G -> recn _z1 (\\ u, \ i, _F1 @ (u, grecaux1 _K1 _x1 _k1 (_x1 - suc u), i)) _n1 = recn _z2 (\\ u, \ i, _F2 @ (u, grecaux1 _K2 _x2 _k2 (_x2 - suc u), i)) _n2
18 17 conv grecaux2
_G -> grecaux2 _z1 _K1 _F1 _x1 _n1 _k1 = grecaux2 _z2 _K2 _F2 _x2 _n2 _k2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)