theorem grecaux2eqd (_G: wff) (_z1 _z2: nat) (_K1 _K2 _F1 _F2: set)
(_x1 _x2 _n1 _n2 _k1 _k2: nat):
$ _G -> _z1 = _z2 $ >
$ _G -> _K1 == _K2 $ >
$ _G -> _F1 == _F2 $ >
$ _G -> _x1 = _x2 $ >
$ _G -> _n1 = _n2 $ >
$ _G -> _k1 = _k2 $ >
$ _G -> grecaux2 _z1 _K1 _F1 _x1 _n1 _k1 = grecaux2 _z2 _K2 _F2 _x2 _n2 _k2 $;
Step | Hyp | Ref | Expression |
1 |
|
hyp _zh |
_G -> _z1 = _z2 |
2 |
|
hyp _Fh |
_G -> _F1 == _F2 |
3 |
|
eqidd |
_G -> u = u |
4 |
|
hyp _Kh |
_G -> _K1 == _K2 |
5 |
|
hyp _xh |
_G -> _x1 = _x2 |
6 |
|
hyp _kh |
_G -> _k1 = _k2 |
7 |
|
eqidd |
_G -> suc u = suc u |
8 |
5, 7 |
subeqd |
_G -> _x1 - suc u = _x2 - suc u |
9 |
4, 5, 6, 8 |
grecaux1eqd |
_G -> grecaux1 _K1 _x1 _k1 (_x1 - suc u) = grecaux1 _K2 _x2 _k2 (_x2 - suc u) |
10 |
|
eqidd |
_G -> i = i |
11 |
9, 10 |
preqd |
_G -> grecaux1 _K1 _x1 _k1 (_x1 - suc u), i = grecaux1 _K2 _x2 _k2 (_x2 - suc u), i |
12 |
3, 11 |
preqd |
_G -> u, grecaux1 _K1 _x1 _k1 (_x1 - suc u), i = u, grecaux1 _K2 _x2 _k2 (_x2 - suc u), i |
13 |
2, 12 |
appeqd |
_G -> _F1 @ (u, grecaux1 _K1 _x1 _k1 (_x1 - suc u), i) = _F2 @ (u, grecaux1 _K2 _x2 _k2 (_x2 - suc u), i) |
14 |
13 |
lameqd |
_G -> \ i, _F1 @ (u, grecaux1 _K1 _x1 _k1 (_x1 - suc u), i) == \ i, _F2 @ (u, grecaux1 _K2 _x2 _k2 (_x2 - suc u), i) |
15 |
14 |
slameqd |
_G -> (\\ u, \ i, _F1 @ (u, grecaux1 _K1 _x1 _k1 (_x1 - suc u), i)) == (\\ u, \ i, _F2 @ (u, grecaux1 _K2 _x2 _k2 (_x2 - suc u), i)) |
16 |
|
hyp _nh |
_G -> _n1 = _n2 |
17 |
1, 15, 16 |
recneqd |
_G -> recn _z1 (\\ u, \ i, _F1 @ (u, grecaux1 _K1 _x1 _k1 (_x1 - suc u), i)) _n1 = recn _z2 (\\ u, \ i, _F2 @ (u, grecaux1 _K2 _x2 _k2 (_x2 - suc u), i)) _n2 |
18 |
17 |
conv grecaux2 |
_G -> grecaux2 _z1 _K1 _F1 _x1 _n1 _k1 = grecaux2 _z2 _K2 _F2 _x2 _n2 _k2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)