theorem grecaux1eqd (_G: wff) (_K1 _K2: set) (_x1 _x2 _z1 _z2 _n1 _n2: nat):
$ _G -> _K1 == _K2 $ >
$ _G -> _x1 = _x2 $ >
$ _G -> _z1 = _z2 $ >
$ _G -> _n1 = _n2 $ >
$ _G -> grecaux1 _K1 _x1 _z1 _n1 = grecaux1 _K2 _x2 _z2 _n2 $;
Step | Hyp | Ref | Expression |
1 |
|
hyp _zh |
_G -> _z1 = _z2 |
2 |
|
hyp _Kh |
_G -> _K1 == _K2 |
3 |
|
hyp _xh |
_G -> _x1 = _x2 |
4 |
|
eqidd |
_G -> suc u = suc u |
5 |
3, 4 |
subeqd |
_G -> _x1 - suc u = _x2 - suc u |
6 |
|
eqidd |
_G -> i = i |
7 |
5, 6 |
preqd |
_G -> _x1 - suc u, i = _x2 - suc u, i |
8 |
2, 7 |
appeqd |
_G -> _K1 @ (_x1 - suc u, i) = _K2 @ (_x2 - suc u, i) |
9 |
8 |
lameqd |
_G -> \ i, _K1 @ (_x1 - suc u, i) == \ i, _K2 @ (_x2 - suc u, i) |
10 |
9 |
slameqd |
_G -> (\\ u, \ i, _K1 @ (_x1 - suc u, i)) == (\\ u, \ i, _K2 @ (_x2 - suc u, i)) |
11 |
|
hyp _nh |
_G -> _n1 = _n2 |
12 |
1, 10, 11 |
recneqd |
_G -> recn _z1 (\\ u, \ i, _K1 @ (_x1 - suc u, i)) _n1 = recn _z2 (\\ u, \ i, _K2 @ (_x2 - suc u, i)) _n2 |
13 |
12 |
conv grecaux1 |
_G -> grecaux1 _K1 _x1 _z1 _n1 = grecaux1 _K2 _x2 _z2 _n2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)