Theorem repeatArray | index | src |

theorem repeatArray (A: set) (a n: nat): $ a e. A -> repeat a n e. Array A n $;
StepHypRefExpression
1 elArray
repeat a n e. Array A n <-> repeat a n e. List A /\ len (repeat a n) = n
2 repeatT
a e. A -> repeat a n e. List A
3 repeatlen
len (repeat a n) = n
4 3 a1i
a e. A -> len (repeat a n) = n
5 2, 4 iand
a e. A -> repeat a n e. List A /\ len (repeat a n) = n
6 1, 5 sylibr
a e. A -> repeat a n e. Array A n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)