theorem repeatlen (a n: nat): $ len (repeat a n) = n $;
Step | Hyp | Ref | Expression |
1 |
|
eqidd |
_1 = n -> a = a |
2 |
|
id |
_1 = n -> _1 = n |
3 |
1, 2 |
repeateqd |
_1 = n -> repeat a _1 = repeat a n |
4 |
3 |
leneqd |
_1 = n -> len (repeat a _1) = len (repeat a n) |
5 |
4, 2 |
eqeqd |
_1 = n -> (len (repeat a _1) = _1 <-> len (repeat a n) = n) |
6 |
|
eqidd |
_1 = 0 -> a = a |
7 |
|
id |
_1 = 0 -> _1 = 0 |
8 |
6, 7 |
repeateqd |
_1 = 0 -> repeat a _1 = repeat a 0 |
9 |
8 |
leneqd |
_1 = 0 -> len (repeat a _1) = len (repeat a 0) |
10 |
9, 7 |
eqeqd |
_1 = 0 -> (len (repeat a _1) = _1 <-> len (repeat a 0) = 0) |
11 |
|
eqidd |
_1 = a1 -> a = a |
12 |
|
id |
_1 = a1 -> _1 = a1 |
13 |
11, 12 |
repeateqd |
_1 = a1 -> repeat a _1 = repeat a a1 |
14 |
13 |
leneqd |
_1 = a1 -> len (repeat a _1) = len (repeat a a1) |
15 |
14, 12 |
eqeqd |
_1 = a1 -> (len (repeat a _1) = _1 <-> len (repeat a a1) = a1) |
16 |
|
eqidd |
_1 = suc a1 -> a = a |
17 |
|
id |
_1 = suc a1 -> _1 = suc a1 |
18 |
16, 17 |
repeateqd |
_1 = suc a1 -> repeat a _1 = repeat a (suc a1) |
19 |
18 |
leneqd |
_1 = suc a1 -> len (repeat a _1) = len (repeat a (suc a1)) |
20 |
19, 17 |
eqeqd |
_1 = suc a1 -> (len (repeat a _1) = _1 <-> len (repeat a (suc a1)) = suc a1) |
21 |
|
eqtr |
len (repeat a 0) = len 0 -> len 0 = 0 -> len (repeat a 0) = 0 |
22 |
|
leneq |
repeat a 0 = 0 -> len (repeat a 0) = len 0 |
23 |
|
repeat0 |
repeat a 0 = 0 |
24 |
22, 23 |
ax_mp |
len (repeat a 0) = len 0 |
25 |
21, 24 |
ax_mp |
len 0 = 0 -> len (repeat a 0) = 0 |
26 |
|
len0 |
len 0 = 0 |
27 |
25, 26 |
ax_mp |
len (repeat a 0) = 0 |
28 |
|
leneq |
repeat a (suc a1) = a : repeat a a1 -> len (repeat a (suc a1)) = len (a : repeat a a1) |
29 |
|
repeatS |
repeat a (suc a1) = a : repeat a a1 |
30 |
28, 29 |
ax_mp |
len (repeat a (suc a1)) = len (a : repeat a a1) |
31 |
|
lenS |
len (a : repeat a a1) = suc (len (repeat a a1)) |
32 |
|
suceq |
len (repeat a a1) = a1 -> suc (len (repeat a a1)) = suc a1 |
33 |
31, 32 |
syl5eq |
len (repeat a a1) = a1 -> len (a : repeat a a1) = suc a1 |
34 |
30, 33 |
syl5eq |
len (repeat a a1) = a1 -> len (repeat a (suc a1)) = suc a1 |
35 |
5, 10, 15, 20, 27, 34 |
ind |
len (repeat a n) = n |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)