theorem repeatlen (a n: nat): $ len (repeat a n) = n $;
| Step | Hyp | Ref | Expression |
| 1 |
|
eqidd |
_1 = n -> a = a |
| 2 |
|
id |
_1 = n -> _1 = n |
| 3 |
1, 2 |
repeateqd |
_1 = n -> repeat a _1 = repeat a n |
| 4 |
3 |
leneqd |
_1 = n -> len (repeat a _1) = len (repeat a n) |
| 5 |
4, 2 |
eqeqd |
_1 = n -> (len (repeat a _1) = _1 <-> len (repeat a n) = n) |
| 6 |
|
eqidd |
_1 = 0 -> a = a |
| 7 |
|
id |
_1 = 0 -> _1 = 0 |
| 8 |
6, 7 |
repeateqd |
_1 = 0 -> repeat a _1 = repeat a 0 |
| 9 |
8 |
leneqd |
_1 = 0 -> len (repeat a _1) = len (repeat a 0) |
| 10 |
9, 7 |
eqeqd |
_1 = 0 -> (len (repeat a _1) = _1 <-> len (repeat a 0) = 0) |
| 11 |
|
eqidd |
_1 = a1 -> a = a |
| 12 |
|
id |
_1 = a1 -> _1 = a1 |
| 13 |
11, 12 |
repeateqd |
_1 = a1 -> repeat a _1 = repeat a a1 |
| 14 |
13 |
leneqd |
_1 = a1 -> len (repeat a _1) = len (repeat a a1) |
| 15 |
14, 12 |
eqeqd |
_1 = a1 -> (len (repeat a _1) = _1 <-> len (repeat a a1) = a1) |
| 16 |
|
eqidd |
_1 = suc a1 -> a = a |
| 17 |
|
id |
_1 = suc a1 -> _1 = suc a1 |
| 18 |
16, 17 |
repeateqd |
_1 = suc a1 -> repeat a _1 = repeat a (suc a1) |
| 19 |
18 |
leneqd |
_1 = suc a1 -> len (repeat a _1) = len (repeat a (suc a1)) |
| 20 |
19, 17 |
eqeqd |
_1 = suc a1 -> (len (repeat a _1) = _1 <-> len (repeat a (suc a1)) = suc a1) |
| 21 |
|
eqtr |
len (repeat a 0) = len 0 -> len 0 = 0 -> len (repeat a 0) = 0 |
| 22 |
|
leneq |
repeat a 0 = 0 -> len (repeat a 0) = len 0 |
| 23 |
|
repeat0 |
repeat a 0 = 0 |
| 24 |
22, 23 |
ax_mp |
len (repeat a 0) = len 0 |
| 25 |
21, 24 |
ax_mp |
len 0 = 0 -> len (repeat a 0) = 0 |
| 26 |
|
len0 |
len 0 = 0 |
| 27 |
25, 26 |
ax_mp |
len (repeat a 0) = 0 |
| 28 |
|
leneq |
repeat a (suc a1) = a : repeat a a1 -> len (repeat a (suc a1)) = len (a : repeat a a1) |
| 29 |
|
repeatS |
repeat a (suc a1) = a : repeat a a1 |
| 30 |
28, 29 |
ax_mp |
len (repeat a (suc a1)) = len (a : repeat a a1) |
| 31 |
|
lenS |
len (a : repeat a a1) = suc (len (repeat a a1)) |
| 32 |
|
suceq |
len (repeat a a1) = a1 -> suc (len (repeat a a1)) = suc a1 |
| 33 |
31, 32 |
syl5eq |
len (repeat a a1) = a1 -> len (a : repeat a a1) = suc a1 |
| 34 |
30, 33 |
syl5eq |
len (repeat a a1) = a1 -> len (repeat a (suc a1)) = suc a1 |
| 35 |
5, 10, 15, 20, 27, 34 |
ind |
len (repeat a n) = n |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)