theorem repeateqd (_G: wff) (_a1 _a2 _n1 _n2: nat):
$ _G -> _a1 = _a2 $ >
$ _G -> _n1 = _n2 $ >
$ _G -> repeat _a1 _n1 = repeat _a2 _n2 $;
Step | Hyp | Ref | Expression |
1 |
|
eqidd |
_G -> 0 = 0 |
2 |
|
hyp _ah |
_G -> _a1 = _a2 |
3 |
|
eqidd |
_G -> x = x |
4 |
2, 3 |
conseqd |
_G -> _a1 : x = _a2 : x |
5 |
4 |
lameqd |
_G -> \ x, _a1 : x == \ x, _a2 : x |
6 |
|
hyp _nh |
_G -> _n1 = _n2 |
7 |
1, 5, 6 |
receqd |
_G -> rec 0 (\ x, _a1 : x) _n1 = rec 0 (\ x, _a2 : x) _n2 |
8 |
7 |
conv repeat |
_G -> repeat _a1 _n1 = repeat _a2 _n2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)