theorem appendnth2 (i l1 l2: nat):
$ len l1 <= i -> nth i (l1 ++ l2) = nth (i - len l1) l2 $;
Step | Hyp | Ref | Expression |
1 |
|
appendnth2_ |
nth (len l1 + (i - len l1)) (l1 ++ l2) = nth (i - len l1) l2 |
2 |
|
pncan3 |
len l1 <= i -> len l1 + (i - len l1) = i |
3 |
2 |
eqcomd |
len l1 <= i -> i = len l1 + (i - len l1) |
4 |
3 |
ntheq1d |
len l1 <= i -> nth i (l1 ++ l2) = nth (len l1 + (i - len l1)) (l1 ++ l2) |
5 |
1, 4 |
syl6eq |
len l1 <= i -> nth i (l1 ++ l2) = nth (i - len l1) l2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)