| Step | Hyp | Ref | Expression |
| 1 |
|
eqidd |
_1 = m -> a = a |
| 2 |
|
id |
_1 = m -> _1 = m |
| 3 |
|
eqidd |
_1 = m -> n = n |
| 4 |
2, 3 |
addeqd |
_1 = m -> _1 + n = m + n |
| 5 |
1, 4 |
repeateqd |
_1 = m -> repeat a (_1 + n) = repeat a (m + n) |
| 6 |
1, 2 |
repeateqd |
_1 = m -> repeat a _1 = repeat a m |
| 7 |
|
eqidd |
_1 = m -> repeat a n = repeat a n |
| 8 |
6, 7 |
appendeqd |
_1 = m -> repeat a _1 ++ repeat a n = repeat a m ++ repeat a n |
| 9 |
5, 8 |
eqeqd |
_1 = m -> (repeat a (_1 + n) = repeat a _1 ++ repeat a n <-> repeat a (m + n) = repeat a m ++ repeat a n) |
| 10 |
|
eqidd |
_1 = 0 -> a = a |
| 11 |
|
id |
_1 = 0 -> _1 = 0 |
| 12 |
|
eqidd |
_1 = 0 -> n = n |
| 13 |
11, 12 |
addeqd |
_1 = 0 -> _1 + n = 0 + n |
| 14 |
10, 13 |
repeateqd |
_1 = 0 -> repeat a (_1 + n) = repeat a (0 + n) |
| 15 |
10, 11 |
repeateqd |
_1 = 0 -> repeat a _1 = repeat a 0 |
| 16 |
|
eqidd |
_1 = 0 -> repeat a n = repeat a n |
| 17 |
15, 16 |
appendeqd |
_1 = 0 -> repeat a _1 ++ repeat a n = repeat a 0 ++ repeat a n |
| 18 |
14, 17 |
eqeqd |
_1 = 0 -> (repeat a (_1 + n) = repeat a _1 ++ repeat a n <-> repeat a (0 + n) = repeat a 0 ++ repeat a n) |
| 19 |
|
eqidd |
_1 = a1 -> a = a |
| 20 |
|
id |
_1 = a1 -> _1 = a1 |
| 21 |
|
eqidd |
_1 = a1 -> n = n |
| 22 |
20, 21 |
addeqd |
_1 = a1 -> _1 + n = a1 + n |
| 23 |
19, 22 |
repeateqd |
_1 = a1 -> repeat a (_1 + n) = repeat a (a1 + n) |
| 24 |
19, 20 |
repeateqd |
_1 = a1 -> repeat a _1 = repeat a a1 |
| 25 |
|
eqidd |
_1 = a1 -> repeat a n = repeat a n |
| 26 |
24, 25 |
appendeqd |
_1 = a1 -> repeat a _1 ++ repeat a n = repeat a a1 ++ repeat a n |
| 27 |
23, 26 |
eqeqd |
_1 = a1 -> (repeat a (_1 + n) = repeat a _1 ++ repeat a n <-> repeat a (a1 + n) = repeat a a1 ++ repeat a n) |
| 28 |
|
eqidd |
_1 = suc a1 -> a = a |
| 29 |
|
id |
_1 = suc a1 -> _1 = suc a1 |
| 30 |
|
eqidd |
_1 = suc a1 -> n = n |
| 31 |
29, 30 |
addeqd |
_1 = suc a1 -> _1 + n = suc a1 + n |
| 32 |
28, 31 |
repeateqd |
_1 = suc a1 -> repeat a (_1 + n) = repeat a (suc a1 + n) |
| 33 |
28, 29 |
repeateqd |
_1 = suc a1 -> repeat a _1 = repeat a (suc a1) |
| 34 |
|
eqidd |
_1 = suc a1 -> repeat a n = repeat a n |
| 35 |
33, 34 |
appendeqd |
_1 = suc a1 -> repeat a _1 ++ repeat a n = repeat a (suc a1) ++ repeat a n |
| 36 |
32, 35 |
eqeqd |
_1 = suc a1 -> (repeat a (_1 + n) = repeat a _1 ++ repeat a n <-> repeat a (suc a1 + n) = repeat a (suc a1) ++ repeat a n) |
| 37 |
|
eqtr4 |
repeat a (0 + n) = repeat a n -> repeat a 0 ++ repeat a n = repeat a n -> repeat a (0 + n) = repeat a 0 ++ repeat a n |
| 38 |
|
repeateq2 |
0 + n = n -> repeat a (0 + n) = repeat a n |
| 39 |
|
add01 |
0 + n = n |
| 40 |
38, 39 |
ax_mp |
repeat a (0 + n) = repeat a n |
| 41 |
37, 40 |
ax_mp |
repeat a 0 ++ repeat a n = repeat a n -> repeat a (0 + n) = repeat a 0 ++ repeat a n |
| 42 |
|
eqtr |
repeat a 0 ++ repeat a n = 0 ++ repeat a n -> 0 ++ repeat a n = repeat a n -> repeat a 0 ++ repeat a n = repeat a n |
| 43 |
|
appendeq1 |
repeat a 0 = 0 -> repeat a 0 ++ repeat a n = 0 ++ repeat a n |
| 44 |
|
repeat0 |
repeat a 0 = 0 |
| 45 |
43, 44 |
ax_mp |
repeat a 0 ++ repeat a n = 0 ++ repeat a n |
| 46 |
42, 45 |
ax_mp |
0 ++ repeat a n = repeat a n -> repeat a 0 ++ repeat a n = repeat a n |
| 47 |
|
append0 |
0 ++ repeat a n = repeat a n |
| 48 |
46, 47 |
ax_mp |
repeat a 0 ++ repeat a n = repeat a n |
| 49 |
41, 48 |
ax_mp |
repeat a (0 + n) = repeat a 0 ++ repeat a n |
| 50 |
|
repeateq2 |
suc a1 + n = suc (a1 + n) -> repeat a (suc a1 + n) = repeat a (suc (a1 + n)) |
| 51 |
|
addS1 |
suc a1 + n = suc (a1 + n) |
| 52 |
50, 51 |
ax_mp |
repeat a (suc a1 + n) = repeat a (suc (a1 + n)) |
| 53 |
|
appendeq1 |
repeat a (suc a1) = a : repeat a a1 -> repeat a (suc a1) ++ repeat a n = a : repeat a a1 ++ repeat a n |
| 54 |
|
repeatS |
repeat a (suc a1) = a : repeat a a1 |
| 55 |
53, 54 |
ax_mp |
repeat a (suc a1) ++ repeat a n = a : repeat a a1 ++ repeat a n |
| 56 |
|
repeatS |
repeat a (suc (a1 + n)) = a : repeat a (a1 + n) |
| 57 |
|
appendS |
a : repeat a a1 ++ repeat a n = a : (repeat a a1 ++ repeat a n) |
| 58 |
|
conseq2 |
repeat a (a1 + n) = repeat a a1 ++ repeat a n -> a : repeat a (a1 + n) = a : (repeat a a1 ++ repeat a n) |
| 59 |
56, 57, 58 |
eqtr4g |
repeat a (a1 + n) = repeat a a1 ++ repeat a n -> repeat a (suc (a1 + n)) = a : repeat a a1 ++ repeat a n |
| 60 |
52, 55, 59 |
eqtr4g |
repeat a (a1 + n) = repeat a a1 ++ repeat a n -> repeat a (suc a1 + n) = repeat a (suc a1) ++ repeat a n |
| 61 |
9, 18, 27, 36, 49, 60 |
ind |
repeat a (m + n) = repeat a m ++ repeat a n |