Theorem appendeqd | index | src |

theorem appendeqd (_G: wff) (_l11 _l12 _l21 _l22: nat):
  $ _G -> _l11 = _l12 $ >
  $ _G -> _l21 = _l22 $ >
  $ _G -> _l11 ++ _l21 = _l12 ++ _l22 $;
StepHypRefExpression
1 hyp _l2h
_G -> _l21 = _l22
2 eqsidd
_G -> (\\ x, \\ z, \ y, x : y) == (\\ x, \\ z, \ y, x : y)
3 hyp _l1h
_G -> _l11 = _l12
4 1, 2, 3 lreceqd
_G -> lrec _l21 (\\ x, \\ z, \ y, x : y) _l11 = lrec _l22 (\\ x, \\ z, \ y, x : y) _l12
5 4 conv append
_G -> _l11 ++ _l21 = _l12 ++ _l22

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)