pub theorem repeatS (a n: nat): $ repeat a (suc n) = a : repeat a n $;
Step | Hyp | Ref | Expression |
---|---|---|---|
2 |
rec 0 (\ x, a : x) (suc n) = (\ x, a : x) @ rec 0 (\ x, a : x) n |
||
3 |
conv repeat |
repeat a (suc n) = (\ x, a : x) @ rec 0 (\ x, a : x) n |
|
5 |
x = repeat a n -> a : x = a : repeat a n |
||
6 |
(\ x, a : x) @ repeat a n = a : repeat a n |
||
7 |
conv repeat |
(\ x, a : x) @ rec 0 (\ x, a : x) n = a : repeat a n |
|
8 |
eqtr* |
repeat a (suc n) = a : repeat a n |