Theorem append0 | index | src |

pub theorem append0 (l: nat): $ 0 ++ l = l $;
StepHypRefExpression
1 lrec0
lrec l (\\ a1, \\ a2, \ a3, a1 : a3) 0 = l
2 1 conv append
0 ++ l = l

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)