Theorem lrec0 | index | src |

pub theorem lrec0 (z: nat) (S: set): $ lrec z S 0 = z $;
StepHypRefExpression
1 eqtr
lrec z S 0 = if (0 = 0) z (S @ (fst (0 - 1), snd (0 - 1), lrec z S (snd (0 - 1)))) ->
  if (0 = 0) z (S @ (fst (0 - 1), snd (0 - 1), lrec z S (snd (0 - 1)))) = z ->
  lrec z S 0 = z
2 lrecval
lrec z S 0 = if (0 = 0) z (S @ (fst (0 - 1), snd (0 - 1), lrec z S (snd (0 - 1))))
3 1, 2 ax_mp
if (0 = 0) z (S @ (fst (0 - 1), snd (0 - 1), lrec z S (snd (0 - 1)))) = z -> lrec z S 0 = z
4 ifpos
0 = 0 -> if (0 = 0) z (S @ (fst (0 - 1), snd (0 - 1), lrec z S (snd (0 - 1)))) = z
5 eqid
0 = 0
6 4, 5 ax_mp
if (0 = 0) z (S @ (fst (0 - 1), snd (0 - 1), lrec z S (snd (0 - 1)))) = z
7 3, 6 ax_mp
lrec z S 0 = z

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)