Theorem elArray | index | src |

theorem elArray (A: set) (l n: nat):
  $ l e. Array A n <-> l e. List A /\ len l = n $;
StepHypRefExpression
1 eleq1
x = l -> (x e. List A <-> l e. List A)
2 leneq
x = l -> len x = len l
3 2 eqeq1d
x = l -> (len x = n <-> len l = n)
4 1, 3 aneqd
x = l -> (x e. List A /\ len x = n <-> l e. List A /\ len l = n)
5 4 elabe
l e. {x | x e. List A /\ len x = n} <-> l e. List A /\ len l = n
6 5 conv Array
l e. Array A n <-> l e. List A /\ len l = n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)