Theorem grecaux1eq | index | src |

theorem grecaux1eq (_K1 _K2: set) (_x1 _x2 _z1 _z2 _n1 _n2: nat):
  $ _K1 == _K2 ->
    _x1 = _x2 ->
    _z1 = _z2 ->
    _n1 = _n2 ->
    grecaux1 _K1 _x1 _z1 _n1 = grecaux1 _K2 _x2 _z2 _n2 $;
StepHypRefExpression
1 anl
_K1 == _K2 /\ _x1 = _x2 -> _K1 == _K2
2 1 anwl
_K1 == _K2 /\ _x1 = _x2 /\ _z1 = _z2 -> _K1 == _K2
3 2 anwl
_K1 == _K2 /\ _x1 = _x2 /\ _z1 = _z2 /\ _n1 = _n2 -> _K1 == _K2
4 anr
_K1 == _K2 /\ _x1 = _x2 -> _x1 = _x2
5 4 anwl
_K1 == _K2 /\ _x1 = _x2 /\ _z1 = _z2 -> _x1 = _x2
6 5 anwl
_K1 == _K2 /\ _x1 = _x2 /\ _z1 = _z2 /\ _n1 = _n2 -> _x1 = _x2
7 anr
_K1 == _K2 /\ _x1 = _x2 /\ _z1 = _z2 -> _z1 = _z2
8 7 anwl
_K1 == _K2 /\ _x1 = _x2 /\ _z1 = _z2 /\ _n1 = _n2 -> _z1 = _z2
9 anr
_K1 == _K2 /\ _x1 = _x2 /\ _z1 = _z2 /\ _n1 = _n2 -> _n1 = _n2
10 3, 6, 8, 9 grecaux1eqd
_K1 == _K2 /\ _x1 = _x2 /\ _z1 = _z2 /\ _n1 = _n2 -> grecaux1 _K1 _x1 _z1 _n1 = grecaux1 _K2 _x2 _z2 _n2
11 10 exp
_K1 == _K2 /\ _x1 = _x2 /\ _z1 = _z2 -> _n1 = _n2 -> grecaux1 _K1 _x1 _z1 _n1 = grecaux1 _K2 _x2 _z2 _n2
12 11 exp
_K1 == _K2 /\ _x1 = _x2 -> _z1 = _z2 -> _n1 = _n2 -> grecaux1 _K1 _x1 _z1 _n1 = grecaux1 _K2 _x2 _z2 _n2
13 12 exp
_K1 == _K2 -> _x1 = _x2 -> _z1 = _z2 -> _n1 = _n2 -> grecaux1 _K1 _x1 _z1 _n1 = grecaux1 _K2 _x2 _z2 _n2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)