Theorem grecaux1eq1d | index | src |

theorem grecaux1eq1d (_G: wff) (_K1 _K2: set) (x z n: nat):
  $ _G -> _K1 == _K2 $ >
  $ _G -> grecaux1 _K1 x z n = grecaux1 _K2 x z n $;
StepHypRefExpression
1 hyp _h
_G -> _K1 == _K2
2 eqidd
_G -> x = x
3 eqidd
_G -> z = z
4 eqidd
_G -> n = n
5 1, 2, 3, 4 grecaux1eqd
_G -> grecaux1 _K1 x z n = grecaux1 _K2 x z n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)