Theorem recneqd | index | src |

theorem recneqd (_G: wff) (_z1 _z2: nat) (_S1 _S2: set) (_n1 _n2: nat):
  $ _G -> _z1 = _z2 $ >
  $ _G -> _S1 == _S2 $ >
  $ _G -> _n1 = _n2 $ >
  $ _G -> recn _z1 _S1 _n1 = recn _z2 _S2 _n2 $;
StepHypRefExpression
1 hyp _zh
_G -> _z1 = _z2
2 hyp _Sh
_G -> _S1 == _S2
3 hyp _nh
_G -> _n1 = _n2
4 1, 2, 3 recnauxeqd
_G -> recnaux _z1 _S1 _n1 = recnaux _z2 _S2 _n2
5 4 sndeqd
_G -> snd (recnaux _z1 _S1 _n1) = snd (recnaux _z2 _S2 _n2)
6 5 conv recn
_G -> recn _z1 _S1 _n1 = recn _z2 _S2 _n2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)