theorem recnauxeqd (_G: wff) (_z1 _z2: nat) (_S1 _S2: set) (_n1 _n2: nat):
$ _G -> _z1 = _z2 $ >
$ _G -> _S1 == _S2 $ >
$ _G -> _n1 = _n2 $ >
$ _G -> recnaux _z1 _S1 _n1 = recnaux _z2 _S2 _n2 $;
Step | Hyp | Ref | Expression |
1 |
|
eqidd |
_G -> 0 = 0 |
2 |
|
hyp _zh |
_G -> _z1 = _z2 |
3 |
1, 2 |
preqd |
_G -> 0, _z1 = 0, _z2 |
4 |
|
eqidd |
_G -> suc (fst p) = suc (fst p) |
5 |
|
hyp _Sh |
_G -> _S1 == _S2 |
6 |
|
eqidd |
_G -> p = p |
7 |
5, 6 |
appeqd |
_G -> _S1 @ p = _S2 @ p |
8 |
4, 7 |
preqd |
_G -> suc (fst p), _S1 @ p = suc (fst p), _S2 @ p |
9 |
8 |
lameqd |
_G -> \ p, suc (fst p), _S1 @ p == \ p, suc (fst p), _S2 @ p |
10 |
|
hyp _nh |
_G -> _n1 = _n2 |
11 |
3, 9, 10 |
receqd |
_G -> rec (0, _z1) (\ p, suc (fst p), _S1 @ p) _n1 = rec (0, _z2) (\ p, suc (fst p), _S2 @ p) _n2 |
12 |
11 |
conv recnaux |
_G -> recnaux _z1 _S1 _n1 = recnaux _z2 _S2 _n2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)