Theorem recnauxeqd | index | src |

theorem recnauxeqd (_G: wff) (_z1 _z2: nat) (_S1 _S2: set) (_n1 _n2: nat):
  $ _G -> _z1 = _z2 $ >
  $ _G -> _S1 == _S2 $ >
  $ _G -> _n1 = _n2 $ >
  $ _G -> recnaux _z1 _S1 _n1 = recnaux _z2 _S2 _n2 $;
StepHypRefExpression
1 eqidd
_G -> 0 = 0
2 hyp _zh
_G -> _z1 = _z2
3 1, 2 preqd
_G -> 0, _z1 = 0, _z2
4 eqidd
_G -> suc (fst p) = suc (fst p)
5 hyp _Sh
_G -> _S1 == _S2
6 eqidd
_G -> p = p
7 5, 6 appeqd
_G -> _S1 @ p = _S2 @ p
8 4, 7 preqd
_G -> suc (fst p), _S1 @ p = suc (fst p), _S2 @ p
9 8 lameqd
_G -> \ p, suc (fst p), _S1 @ p == \ p, suc (fst p), _S2 @ p
10 hyp _nh
_G -> _n1 = _n2
11 3, 9, 10 receqd
_G -> rec (0, _z1) (\ p, suc (fst p), _S1 @ p) _n1 = rec (0, _z2) (\ p, suc (fst p), _S2 @ p) _n2
12 11 conv recnaux
_G -> recnaux _z1 _S1 _n1 = recnaux _z2 _S2 _n2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)