Theorem grecaux20 | index | src |

theorem grecaux20 (F K: set) (k x z: nat): $ grecaux2 z K F x 0 k = z $;
StepHypRefExpression
1 recn0
recn z (\\ a1, \ a2, F @ (a1, grecaux1 K x k (x - suc a1), a2)) 0 = z
2 1 conv grecaux2
grecaux2 z K F x 0 k = z

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)