Theorem recn0 | index | src |

theorem recn0 (S: set) (z: nat): $ recn z S 0 = z $;
StepHypRefExpression
1 eqtr
recn z S 0 = snd (0, z) -> snd (0, z) = z -> recn z S 0 = z
2 sndeq
recnaux z S 0 = 0, z -> snd (recnaux z S 0) = snd (0, z)
3 2 conv recn
recnaux z S 0 = 0, z -> recn z S 0 = snd (0, z)
4 rec0
rec (0, z) (\ a1, suc (fst a1), S @ a1) 0 = 0, z
5 4 conv recnaux
recnaux z S 0 = 0, z
6 3, 5 ax_mp
recn z S 0 = snd (0, z)
7 1, 6 ax_mp
snd (0, z) = z -> recn z S 0 = z
8 sndpr
snd (0, z) = z
9 7, 8 ax_mp
recn z S 0 = z

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)