| Step | Hyp | Ref | Expression |
| 1 |
|
eqtr |
recn z S (suc n) = snd (suc (fst (recnaux z S n)), S @ recnaux z S n) ->
snd (suc (fst (recnaux z S n)), S @ recnaux z S n) = S @ (n, recn z S n) ->
recn z S (suc n) = S @ (n, recn z S n) |
| 2 |
|
sndeq |
recnaux z S (suc n) = suc (fst (recnaux z S n)), S @ recnaux z S n -> snd (recnaux z S (suc n)) = snd (suc (fst (recnaux z S n)), S @ recnaux z S n) |
| 3 |
2 |
conv recn |
recnaux z S (suc n) = suc (fst (recnaux z S n)), S @ recnaux z S n -> recn z S (suc n) = snd (suc (fst (recnaux z S n)), S @ recnaux z S n) |
| 4 |
|
recnauxS2 |
recnaux z S (suc n) = suc (fst (recnaux z S n)), S @ recnaux z S n |
| 5 |
3, 4 |
ax_mp |
recn z S (suc n) = snd (suc (fst (recnaux z S n)), S @ recnaux z S n) |
| 6 |
1, 5 |
ax_mp |
snd (suc (fst (recnaux z S n)), S @ recnaux z S n) = S @ (n, recn z S n) -> recn z S (suc n) = S @ (n, recn z S n) |
| 7 |
|
eqtr |
snd (suc (fst (recnaux z S n)), S @ recnaux z S n) = S @ recnaux z S n ->
S @ recnaux z S n = S @ (n, recn z S n) ->
snd (suc (fst (recnaux z S n)), S @ recnaux z S n) = S @ (n, recn z S n) |
| 8 |
|
sndpr |
snd (suc (fst (recnaux z S n)), S @ recnaux z S n) = S @ recnaux z S n |
| 9 |
7, 8 |
ax_mp |
S @ recnaux z S n = S @ (n, recn z S n) -> snd (suc (fst (recnaux z S n)), S @ recnaux z S n) = S @ (n, recn z S n) |
| 10 |
|
appeq2 |
recnaux z S n = n, recn z S n -> S @ recnaux z S n = S @ (n, recn z S n) |
| 11 |
|
eqtr3 |
fst (recnaux z S n), snd (recnaux z S n) = recnaux z S n -> fst (recnaux z S n), snd (recnaux z S n) = n, recn z S n -> recnaux z S n = n, recn z S n |
| 12 |
|
fstsnd |
fst (recnaux z S n), snd (recnaux z S n) = recnaux z S n |
| 13 |
11, 12 |
ax_mp |
fst (recnaux z S n), snd (recnaux z S n) = n, recn z S n -> recnaux z S n = n, recn z S n |
| 14 |
|
preq1 |
fst (recnaux z S n) = n -> fst (recnaux z S n), snd (recnaux z S n) = n, snd (recnaux z S n) |
| 15 |
14 |
conv recn |
fst (recnaux z S n) = n -> fst (recnaux z S n), snd (recnaux z S n) = n, recn z S n |
| 16 |
|
recnauxfst |
fst (recnaux z S n) = n |
| 17 |
15, 16 |
ax_mp |
fst (recnaux z S n), snd (recnaux z S n) = n, recn z S n |
| 18 |
13, 17 |
ax_mp |
recnaux z S n = n, recn z S n |
| 19 |
10, 18 |
ax_mp |
S @ recnaux z S n = S @ (n, recn z S n) |
| 20 |
9, 19 |
ax_mp |
snd (suc (fst (recnaux z S n)), S @ recnaux z S n) = S @ (n, recn z S n) |
| 21 |
6, 20 |
ax_mp |
recn z S (suc n) = S @ (n, recn z S n) |