theorem grecaux1eq4d (_G: wff) (K: set) (x z _n1 _n2: nat):
  $ _G -> _n1 = _n2 $ >
  $ _G -> grecaux1 K x z _n1 = grecaux1 K x z _n2 $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | eqsidd | _G -> K == K | 
        
          | 2 |  | eqidd | _G -> x = x | 
        
          | 3 |  | eqidd | _G -> z = z | 
        
          | 4 |  | hyp _h | _G -> _n1 = _n2 | 
        
          | 5 | 1, 2, 3, 4 | grecaux1eqd | _G -> grecaux1 K x z _n1 = grecaux1 K x z _n2 | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano2,
      addeq,
      muleq)