Theorem xpfin | index | src |

theorem xpfin (A B: set): $ finite A -> finite B -> finite (Xp A B) $;
StepHypRefExpression
1 lteq2
z = m + n, 0 -> (p < z <-> p < m + n, 0)
2 1 imeq2d
z = m + n, 0 -> (p e. Xp A B -> p < z <-> p e. Xp A B -> p < m + n, 0)
3 2 aleqd
z = m + n, 0 -> (A. p (p e. Xp A B -> p < z) <-> A. p (p e. Xp A B -> p < m + n, 0))
4 3 iexe
A. p (p e. Xp A B -> p < m + n, 0) -> E. z A. p (p e. Xp A B -> p < z)
5 4 conv finite
A. p (p e. Xp A B -> p < m + n, 0) -> finite (Xp A B)
6 elxp
p e. Xp A B <-> fst p e. A /\ snd p e. B
7 lteq1
fst p, snd p = p -> (fst p, snd p < m + n, 0 <-> p < m + n, 0)
8 fstsnd
fst p, snd p = p
9 7, 8 ax_mp
fst p, snd p < m + n, 0 <-> p < m + n, 0
10 ltnle
snd p < n <-> ~n <= snd p
11 ltnle
fst p, snd p < m + n, 0 <-> ~m + n, 0 <= fst p, snd p
12 10, 11 imeqi
snd p < n -> fst p, snd p < m + n, 0 <-> ~n <= snd p -> ~m + n, 0 <= fst p, snd p
13 prlem2
m + n, 0 <= fst p, snd p -> m + n + 0 <= fst p + snd p
14 leeq1
m + n + 0 = m + n -> (m + n + 0 <= fst p + snd p <-> m + n <= fst p + snd p)
15 add0
m + n + 0 = m + n
16 14, 15 ax_mp
m + n + 0 <= fst p + snd p <-> m + n <= fst p + snd p
17 leadd2
n <= snd p <-> fst p + n <= fst p + snd p
18 letr
fst p + n <= m + n -> m + n <= fst p + snd p -> fst p + n <= fst p + snd p
19 leadd1
fst p <= m <-> fst p + n <= m + n
20 ltle
fst p < m -> fst p <= m
21 19, 20 sylib
fst p < m -> fst p + n <= m + n
22 18, 21 syl
fst p < m -> m + n <= fst p + snd p -> fst p + n <= fst p + snd p
23 17, 22 syl6ibr
fst p < m -> m + n <= fst p + snd p -> n <= snd p
24 16, 23 syl5bi
fst p < m -> m + n + 0 <= fst p + snd p -> n <= snd p
25 13, 24 syl5
fst p < m -> m + n, 0 <= fst p, snd p -> n <= snd p
26 25 con3d
fst p < m -> ~n <= snd p -> ~m + n, 0 <= fst p, snd p
27 12, 26 sylibr
fst p < m -> snd p < n -> fst p, snd p < m + n, 0
28 27 imp
fst p < m /\ snd p < n -> fst p, snd p < m + n, 0
29 9, 28 sylib
fst p < m /\ snd p < n -> p < m + n, 0
30 eleq1
x = fst p -> (x e. A <-> fst p e. A)
31 lteq1
x = fst p -> (x < m <-> fst p < m)
32 30, 31 imeqd
x = fst p -> (x e. A -> x < m <-> fst p e. A -> fst p < m)
33 32 eale
A. x (x e. A -> x < m) -> fst p e. A -> fst p < m
34 33 anwl
A. x (x e. A -> x < m) /\ A. y (y e. B -> y < n) -> fst p e. A -> fst p < m
35 eleq1
y = snd p -> (y e. B <-> snd p e. B)
36 lteq1
y = snd p -> (y < n <-> snd p < n)
37 35, 36 imeqd
y = snd p -> (y e. B -> y < n <-> snd p e. B -> snd p < n)
38 37 eale
A. y (y e. B -> y < n) -> snd p e. B -> snd p < n
39 38 anwr
A. x (x e. A -> x < m) /\ A. y (y e. B -> y < n) -> snd p e. B -> snd p < n
40 34, 39 animd
A. x (x e. A -> x < m) /\ A. y (y e. B -> y < n) -> fst p e. A /\ snd p e. B -> fst p < m /\ snd p < n
41 29, 40 syl6
A. x (x e. A -> x < m) /\ A. y (y e. B -> y < n) -> fst p e. A /\ snd p e. B -> p < m + n, 0
42 6, 41 syl5bi
A. x (x e. A -> x < m) /\ A. y (y e. B -> y < n) -> p e. Xp A B -> p < m + n, 0
43 42 iald
A. x (x e. A -> x < m) /\ A. y (y e. B -> y < n) -> A. p (p e. Xp A B -> p < m + n, 0)
44 5, 43 syl
A. x (x e. A -> x < m) /\ A. y (y e. B -> y < n) -> finite (Xp A B)
45 44 eexda
A. x (x e. A -> x < m) -> E. n A. y (y e. B -> y < n) -> finite (Xp A B)
46 45 conv finite
A. x (x e. A -> x < m) -> finite B -> finite (Xp A B)
47 46 eex
E. m A. x (x e. A -> x < m) -> finite B -> finite (Xp A B)
48 47 conv finite
finite A -> finite B -> finite (Xp A B)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)