Theorem elxp | index | src |

theorem elxp (A B: set) (a: nat): $ a e. Xp A B <-> fst a e. A /\ snd a e. B $;
StepHypRefExpression
1 bitr3
(fst a, snd a e. Xp A B <-> a e. Xp A B) -> (fst a, snd a e. Xp A B <-> fst a e. A /\ snd a e. B) -> (a e. Xp A B <-> fst a e. A /\ snd a e. B)
2 eleq1
fst a, snd a = a -> (fst a, snd a e. Xp A B <-> a e. Xp A B)
3 fstsnd
fst a, snd a = a
4 2, 3 ax_mp
fst a, snd a e. Xp A B <-> a e. Xp A B
5 1, 4 ax_mp
(fst a, snd a e. Xp A B <-> fst a e. A /\ snd a e. B) -> (a e. Xp A B <-> fst a e. A /\ snd a e. B)
6 prelxp
fst a, snd a e. Xp A B <-> fst a e. A /\ snd a e. B
7 5, 6 ax_mp
a e. Xp A B <-> fst a e. A /\ snd a e. B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)