Theorem xpvv | index | src |

theorem xpvv: $ Xp _V _V == _V $;
StepHypRefExpression
1 bith
p e. Xp _V _V -> p e. _V -> (p e. Xp _V _V <-> p e. _V)
2 elxp
p e. Xp _V _V <-> fst p e. _V /\ snd p e. _V
3 ian
fst p e. _V -> snd p e. _V -> fst p e. _V /\ snd p e. _V
4 elv
fst p e. _V
5 3, 4 ax_mp
snd p e. _V -> fst p e. _V /\ snd p e. _V
6 elv
snd p e. _V
7 5, 6 ax_mp
fst p e. _V /\ snd p e. _V
8 2, 7 mpbir
p e. Xp _V _V
9 1, 8 ax_mp
p e. _V -> (p e. Xp _V _V <-> p e. _V)
10 elv
p e. _V
11 9, 10 ax_mp
p e. Xp _V _V <-> p e. _V
12 11 eqri
Xp _V _V == _V

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)