Theorem bith | index | src |

theorem bith (a b: wff): $ a -> b -> (a <-> b) $;
StepHypRefExpression
1 anl
a /\ b -> a
2 anr
a /\ b -> b
3 1, 2 bithd
a /\ b -> (a <-> b)
4 3 exp
a -> b -> (a <-> b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)