Theorem binthd | index | src |

theorem binthd (a b c: wff): $ a -> ~b $ > $ a -> ~c $ > $ a -> (b <-> c) $;
StepHypRefExpression
1 con4b
(~b <-> ~c) -> (b <-> c)
2 hyp h1
a -> ~b
3 hyp h2
a -> ~c
4 2, 3 bithd
a -> (~b <-> ~c)
5 1, 4 syl
a -> (b <-> c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)