Theorem bithd | index | src |

theorem bithd (a b c: wff): $ a -> b $ > $ a -> c $ > $ a -> (b <-> c) $;
StepHypRefExpression
1 hyp h2
a -> c
2 1 a1d
a -> b -> c
3 hyp h1
a -> b
4 3 a1d
a -> c -> b
5 2, 4 ibid
a -> (b <-> c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)